{"title":"Decadal oceanic variability amplified recent heatwave in the Northern Hemisphere","authors":"Nan Lei, Xiaodan Guan, Yongkun Xie, Xiaohan Shen, Yuhang Ding, Jianping Huang","doi":"10.1038/s41612-025-01179-6","DOIUrl":null,"url":null,"abstract":"<p>The persistent increase in heatwaves has caused substantial economic and ecological damage. However, the contribution of decadal oceanic variability to the recent surge in heatwaves remains unclear. Here, using observations and simulations, we demonstrate that oceanic modulation drives decadal heatwave swings and trends. We quantify that the decadal component of heatwave cumulative intensity (HWCI) accounts for 57% of the observed increase in HWCI across the Northern Hemisphere from 2013 to 2021, with 44% attributed to increases in the smoothed component (HWCI<sub>S</sub>) and 13% to enhancements in the anomaly component (HWCI<sub>A</sub>). Notably, decadal oceanic variability contributed to 63% of the HWCI increase in the Northern Hemisphere during 2013–2021 and to 26% over 1985–2021. Regionally, oceanic modulation amplified HWCI by 58% in Europe, and contributed more than 20% in North Africa, southern North America, eastern China, and northern Central Asia during 2013–2021. The positive-to-negative phase transitions of the Atlantic Multidecadal Oscillation (AMO) and Interdecadal Pacific Oscillation (IPO) were identified as key drivers of this recent intensification. Model simulations incorporating AMO and IPO forcings closely align with observed HWCI decadal oscillations since 1940, further supporting these findings. Our results highlight that oceanic modulation can significantly amplify or dampen human-induced long-term heatwave trends, suggesting a potential slowdown in heatwave intensification in the coming decades as oceanic variability transitions to a new phase.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"65 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01179-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The persistent increase in heatwaves has caused substantial economic and ecological damage. However, the contribution of decadal oceanic variability to the recent surge in heatwaves remains unclear. Here, using observations and simulations, we demonstrate that oceanic modulation drives decadal heatwave swings and trends. We quantify that the decadal component of heatwave cumulative intensity (HWCI) accounts for 57% of the observed increase in HWCI across the Northern Hemisphere from 2013 to 2021, with 44% attributed to increases in the smoothed component (HWCIS) and 13% to enhancements in the anomaly component (HWCIA). Notably, decadal oceanic variability contributed to 63% of the HWCI increase in the Northern Hemisphere during 2013–2021 and to 26% over 1985–2021. Regionally, oceanic modulation amplified HWCI by 58% in Europe, and contributed more than 20% in North Africa, southern North America, eastern China, and northern Central Asia during 2013–2021. The positive-to-negative phase transitions of the Atlantic Multidecadal Oscillation (AMO) and Interdecadal Pacific Oscillation (IPO) were identified as key drivers of this recent intensification. Model simulations incorporating AMO and IPO forcings closely align with observed HWCI decadal oscillations since 1940, further supporting these findings. Our results highlight that oceanic modulation can significantly amplify or dampen human-induced long-term heatwave trends, suggesting a potential slowdown in heatwave intensification in the coming decades as oceanic variability transitions to a new phase.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.