Centromeres drive and take a break.

IF 2.8 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Paul B Talbert, Steven Henikoff
{"title":"Centromeres drive and take a break.","authors":"Paul B Talbert, Steven Henikoff","doi":"10.1007/s10577-025-09777-z","DOIUrl":null,"url":null,"abstract":"<p><p>The identification of CENPA, CENPB, and CENPC by Earnshaw and Rothfield 40 years ago has revealed the remarkable diversity and complexity of centromeres and confirmed most seed plants and animals have centromeres comprised of complex satellite arrays. The rapid evolution of centromeres and positive selection on CENPA and CENPC led to the centromere drive model, in which competition between tandem satellite arrays of differing size and centromere strength for inclusion in the egg of animals or megaspore of seed plants during female meiosis drives rapid evolution of centromeres and kinetochore proteins. Here we review recent work showing that non-B-form DNA structures in satellite centromeres make them sites of frequent replication fork stalling, and that repair of collapsed forks by break-induced replication rather than unequal sister chromatid exchange is likely the primary mode of satellite expansion and contraction, providing the variation in satellite copy number that is the raw material of centromere drive. Centromere breaks at replication, rather than errors at mitosis, can account for most centromere misdivisions that underlie aneuploidies in cancer.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"33 1","pages":"17"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12321929/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-025-09777-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of CENPA, CENPB, and CENPC by Earnshaw and Rothfield 40 years ago has revealed the remarkable diversity and complexity of centromeres and confirmed most seed plants and animals have centromeres comprised of complex satellite arrays. The rapid evolution of centromeres and positive selection on CENPA and CENPC led to the centromere drive model, in which competition between tandem satellite arrays of differing size and centromere strength for inclusion in the egg of animals or megaspore of seed plants during female meiosis drives rapid evolution of centromeres and kinetochore proteins. Here we review recent work showing that non-B-form DNA structures in satellite centromeres make them sites of frequent replication fork stalling, and that repair of collapsed forks by break-induced replication rather than unequal sister chromatid exchange is likely the primary mode of satellite expansion and contraction, providing the variation in satellite copy number that is the raw material of centromere drive. Centromere breaks at replication, rather than errors at mitosis, can account for most centromere misdivisions that underlie aneuploidies in cancer.

Abstract Image

Abstract Image

Abstract Image

着丝粒开车休息。
40年前Earnshaw和Rothfield对CENPA、CENPB和CENPC的鉴定,揭示了着丝粒的显著多样性和复杂性,证实了大多数种子植物和动物都有由复杂卫星阵列组成的着丝粒。着丝粒的快速进化和CENPA和CENPC上的正选择导致了着丝粒驱动模型,在雌性减数分裂期间,不同大小和着丝粒强度的串联卫星阵列为包含在动物卵或种子植物大孢子中而竞争,驱动着丝粒和着丝粒蛋白的快速进化。在这里,我们回顾了最近的研究,这些研究表明,卫星着丝粒中的非b型DNA结构使它们成为频繁的复制叉停止的位点,并且通过断裂诱导的复制而不是姐妹染色单体交换来修复折叠的叉可能是卫星扩展和收缩的主要模式,这提供了卫星拷贝数的变化,这是着丝粒驱动的原材料。着丝粒在复制时断裂,而不是有丝分裂时的错误,可以解释癌症中导致非整倍体的着丝粒分裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chromosome Research
Chromosome Research 生物-生化与分子生物学
CiteScore
4.70
自引率
3.80%
发文量
31
审稿时长
1 months
期刊介绍: Chromosome Research publishes manuscripts from work based on all organisms and encourages submissions in the following areas including, but not limited, to: · Chromosomes and their linkage to diseases; · Chromosome organization within the nucleus; · Chromatin biology (transcription, non-coding RNA, etc); · Chromosome structure, function and mechanics; · Chromosome and DNA repair; · Epigenetic chromosomal functions (centromeres, telomeres, replication, imprinting, dosage compensation, sex determination, chromosome remodeling); · Architectural/epigenomic organization of the genome; · Functional annotation of the genome; · Functional and comparative genomics in plants and animals; · Karyology studies that help resolve difficult taxonomic problems or that provide clues to fundamental mechanisms of genome and karyotype evolution in plants and animals; · Mitosis and Meiosis; · Cancer cytogenomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信