Jinna Yang, Changbai Huang, Yao Feng, Junfang He, Yang Liu, Ping Zhang, Chao Liu
{"title":"Adaptor protein complex 1 gamma 1 subunit is an important host factor involved in both Zika virus and dengue virus infections.","authors":"Jinna Yang, Changbai Huang, Yao Feng, Junfang He, Yang Liu, Ping Zhang, Chao Liu","doi":"10.1016/j.virs.2025.07.012","DOIUrl":null,"url":null,"abstract":"<p><p>Mosquito-borne flaviviruses, such as Zika virus (ZIKV) and dengue virus (DENV), cause diverse severe clinical manifestations including fever, rash, hepatitis, arthralgia, and congenital anomalies. Here, we identified a host factor, the adaptor protein complex 1 gamma 1 subunit (AP1G1), which plays an important role in both ZIKV and dengue virus 2 (DENV2) infections. We explored the role of AP1G1 in ZIKV and DENV2 infections using CRISPR/Cas9 gene editing technology and RNA interference (RNAi) techniques. Knockout or silencing of AP1G1 decreases the replication of ZIKV and DENV2 in multiple human cell lines. Intriguingly, depletion of AP1G1 results in a significant reduction in ZIKV at an early stage, but decreases DENV2 replication levels during the late stage, suggesting that AP1G1 plays distinct roles in the infection by ZIKV and DENV2. Furthermore, we determined that AP1G1 mediates ZIKV-endosomal membrane fusion through inhibitor experiments and fluorescence labeling assays. Mechanistically, we found that AP1G1 exerts its pro-viral effect through binding to the ZIKV envelope glycoprotein (E protein). This interaction promotes the fusion of viral and endosomal membranes, during which the ZIKV genomic RNAs are released from the endosome into the cytoplasm, a process that facilitates viral replication. However, for DENV2 infection, AP1G1 primarily affects its viral RNA replication stage, rather than the fusion of virus-endosomal membrane. Taken together, our work demonstrates that AP1G1 plays a pro-viral role in both ZIKV and DENV2 infections via distinct mechanisms, highlighting its potential as a therapeutic target for antiviral strategies.</p>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.virs.2025.07.012","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Mosquito-borne flaviviruses, such as Zika virus (ZIKV) and dengue virus (DENV), cause diverse severe clinical manifestations including fever, rash, hepatitis, arthralgia, and congenital anomalies. Here, we identified a host factor, the adaptor protein complex 1 gamma 1 subunit (AP1G1), which plays an important role in both ZIKV and dengue virus 2 (DENV2) infections. We explored the role of AP1G1 in ZIKV and DENV2 infections using CRISPR/Cas9 gene editing technology and RNA interference (RNAi) techniques. Knockout or silencing of AP1G1 decreases the replication of ZIKV and DENV2 in multiple human cell lines. Intriguingly, depletion of AP1G1 results in a significant reduction in ZIKV at an early stage, but decreases DENV2 replication levels during the late stage, suggesting that AP1G1 plays distinct roles in the infection by ZIKV and DENV2. Furthermore, we determined that AP1G1 mediates ZIKV-endosomal membrane fusion through inhibitor experiments and fluorescence labeling assays. Mechanistically, we found that AP1G1 exerts its pro-viral effect through binding to the ZIKV envelope glycoprotein (E protein). This interaction promotes the fusion of viral and endosomal membranes, during which the ZIKV genomic RNAs are released from the endosome into the cytoplasm, a process that facilitates viral replication. However, for DENV2 infection, AP1G1 primarily affects its viral RNA replication stage, rather than the fusion of virus-endosomal membrane. Taken together, our work demonstrates that AP1G1 plays a pro-viral role in both ZIKV and DENV2 infections via distinct mechanisms, highlighting its potential as a therapeutic target for antiviral strategies.
Virologica SinicaBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
7.70
自引率
1.80%
发文量
3149
期刊介绍:
Virologica Sinica is an international journal which aims at presenting the cutting-edge research on viruses all over the world. The journal publishes peer-reviewed original research articles, reviews, and letters to the editor, to encompass the latest developments in all branches of virology, including research on animal, plant and microbe viruses. The journal welcomes articles on virus discovery and characterization, viral epidemiology, viral pathogenesis, virus-host interaction, vaccine development, antiviral agents and therapies, and virus related bio-techniques. Virologica Sinica, the official journal of Chinese Society for Microbiology, will serve as a platform for the communication and exchange of academic information and ideas in an international context.
Electronic ISSN: 1995-820X; Print ISSN: 1674-0769