Kalyani R Thombre, Krishna R Gupta, Tejaswini P Masne, Milind Janrao Umekar
{"title":"Recombinant Proteins: Evolution to their Therapeutic Potential.","authors":"Kalyani R Thombre, Krishna R Gupta, Tejaswini P Masne, Milind Janrao Umekar","doi":"10.2174/0109298665387985250710041016","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinant proteins, which are produced using recombinant DNA technology, have transformed the domains of biotechnology and biomedicine by allowing the production of proteins that are often expensive or difficult to obtain from natural sources. More than 130 recombinant proteins are currently in clinical use by the US FDA, demonstrating the importance of these proteins in both research and therapeutic applications. Bacterial, yeast, mammalian cell cultures, and hybridoma technology are examples of recombinant protein production systems that have enabled the large-scale production of therapeutic proteins, including monoclonal antibodies, which are now essential tools in disease treatment. From their origins with human insulin in the 1980s to the most recent developments in third-generation proteins, this brief review examines the development of recombinant protein therapies. The first generation concentrated on natural structures; the second generation focused on enhancing safety, pharmacokinetics, and specificity; and the third generation is ready to present innovative formulations and delivery systems. This review also covers the use of recombinant proteins in cancer treatment, different protein production systems, and design techniques that keep improving the safety and effectiveness profiles of protein therapies.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0109298665387985250710041016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recombinant proteins, which are produced using recombinant DNA technology, have transformed the domains of biotechnology and biomedicine by allowing the production of proteins that are often expensive or difficult to obtain from natural sources. More than 130 recombinant proteins are currently in clinical use by the US FDA, demonstrating the importance of these proteins in both research and therapeutic applications. Bacterial, yeast, mammalian cell cultures, and hybridoma technology are examples of recombinant protein production systems that have enabled the large-scale production of therapeutic proteins, including monoclonal antibodies, which are now essential tools in disease treatment. From their origins with human insulin in the 1980s to the most recent developments in third-generation proteins, this brief review examines the development of recombinant protein therapies. The first generation concentrated on natural structures; the second generation focused on enhancing safety, pharmacokinetics, and specificity; and the third generation is ready to present innovative formulations and delivery systems. This review also covers the use of recombinant proteins in cancer treatment, different protein production systems, and design techniques that keep improving the safety and effectiveness profiles of protein therapies.
期刊介绍:
Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations.
Protein & Peptide Letters focuses on:
Structure Studies
Advances in Recombinant Expression
Drug Design
Chemical Synthesis
Function
Pharmacology
Enzymology
Conformational Analysis
Immunology
Biotechnology
Protein Engineering
Protein Folding
Sequencing
Molecular Recognition
Purification and Analysis