Biomass-derived carbon dots for the initiation of conventional radical and ATRP-based photopolymerization processes.

IF 16 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Xiongfei Luo, Xue Liu, Hongda Guo, Ruiping Li, Min Wang, Xiaotong Li, Shujun Li, Shouxin Liu, Jian Li, Veronika Strehmel, Qunying Wang, Gorkem Yilmaz, Krzysztof Matyjaszewski, Bernd Strehmel, Zhijun Chen
{"title":"Biomass-derived carbon dots for the initiation of conventional radical and ATRP-based photopolymerization processes.","authors":"Xiongfei Luo, Xue Liu, Hongda Guo, Ruiping Li, Min Wang, Xiaotong Li, Shujun Li, Shouxin Liu, Jian Li, Veronika Strehmel, Qunying Wang, Gorkem Yilmaz, Krzysztof Matyjaszewski, Bernd Strehmel, Zhijun Chen","doi":"10.1038/s41596-025-01210-3","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, there has been increasing interest in using carbon nanodots (CDs) as a component photoinitiator to initiate photopolymerization. These systems support conventional radical photopolymerization and light-mediated atom transfer radical polymerization (photo-ATRP), emphasizing single-component (Type I initiators) and multicomponent systems, which involve at least two reaction partners, specifically, the Type II CD initiator. The latter can function in both photoinduced conventional radical polymerization and photo-ATRP. CDs provide an important advantage by reducing toxicological concerns, as they are nontoxic to cells, and minimizing migration issues typically associated with molecular systems. Here we present two novel photopolymerization methods utilizing biomass-derived CDs as light-sensitive components. The first approach uses biobased furfural to create a Type I CD initiator for photoinduced uncontrolled radical polymerization, which initiates polymerization via homolytic bond cleavage of oxime ester groups attached to the CD surface. The second method employs sodium alginate to generate CDs capable of initiating photoinduced radical polymerization or activating alkyl halides in photo-ATRP processes. Key topics covered in these methods include (1) preparation and characterization of biomass-derived CDs; (2) experimental procedures for CD-assisted photo-induced conventional radical polymerization and photo-ATRP and (3) analysis of the resulting polymers. Preparing and characterizing the CDs takes ~4 d, while photochemical reactions can be conducted within 1 h, depending on requirements. Product separation and analysis take an additional 0.5 h. This protocol is designed for users with experience in polymer chemistry and CD handling.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01210-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, there has been increasing interest in using carbon nanodots (CDs) as a component photoinitiator to initiate photopolymerization. These systems support conventional radical photopolymerization and light-mediated atom transfer radical polymerization (photo-ATRP), emphasizing single-component (Type I initiators) and multicomponent systems, which involve at least two reaction partners, specifically, the Type II CD initiator. The latter can function in both photoinduced conventional radical polymerization and photo-ATRP. CDs provide an important advantage by reducing toxicological concerns, as they are nontoxic to cells, and minimizing migration issues typically associated with molecular systems. Here we present two novel photopolymerization methods utilizing biomass-derived CDs as light-sensitive components. The first approach uses biobased furfural to create a Type I CD initiator for photoinduced uncontrolled radical polymerization, which initiates polymerization via homolytic bond cleavage of oxime ester groups attached to the CD surface. The second method employs sodium alginate to generate CDs capable of initiating photoinduced radical polymerization or activating alkyl halides in photo-ATRP processes. Key topics covered in these methods include (1) preparation and characterization of biomass-derived CDs; (2) experimental procedures for CD-assisted photo-induced conventional radical polymerization and photo-ATRP and (3) analysis of the resulting polymers. Preparing and characterizing the CDs takes ~4 d, while photochemical reactions can be conducted within 1 h, depending on requirements. Product separation and analysis take an additional 0.5 h. This protocol is designed for users with experience in polymer chemistry and CD handling.

生物质衍生的碳点用于引发传统的自由基和基于atrp的光聚合过程。
近年来,利用碳纳米点作为光引发剂引发光聚合的研究日益受到关注。这些体系支持传统的自由基光聚合和光介导的原子转移自由基聚合(photoatrp),强调单组分(I型引发剂)和多组分体系,其中至少涉及两个反应伙伴,特别是II型CD引发剂。后者可以在光诱导的常规自由基聚合和光- atrp中发挥作用。cd提供了一个重要的优势,因为它们对细胞无毒,减少了毒理学问题,并最大限度地减少了通常与分子系统相关的迁移问题。在这里,我们提出了两种新的光聚合方法,利用生物质衍生的CDs作为光敏成分。第一种方法是使用生物基糠醛制造I型CD引发剂,用于光诱导不可控自由基聚合,该引发剂通过连接在CD表面的肟酯基的均解键裂解引发聚合。第二种方法使用海藻酸钠生成能够在光- atrp过程中引发光诱导自由基聚合或激活烷基卤化物的CDs。这些方法涵盖的关键主题包括:(1)生物质衍生CDs的制备和表征;(2) cd辅助光诱导常规自由基聚合和光- atrp的实验程序;(3)所得聚合物的分析。制备和表征CDs需要约4 d,而根据需要,光化学反应可以在1 h内进行。产品分离和分析需要额外的0.5小时。该协议是为具有聚合物化学和CD处理经验的用户设计的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信