Fabrication of thermo-sensitive hydrogels based on the Diels-Alder reaction and study on their in vivo biosafety.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Kun Du, Tenglong Xu, YuXin Wang, Yanan Lu, Yanwei Hou, Yongli Shi, Xueyan Hou
{"title":"Fabrication of thermo-sensitive hydrogels based on the Diels-Alder reaction and study on their <i>in vivo</i> biosafety.","authors":"Kun Du, Tenglong Xu, YuXin Wang, Yanan Lu, Yanwei Hou, Yongli Shi, Xueyan Hou","doi":"10.1080/09205063.2025.2526156","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of this study is to develop a novel injectable hydrogel, referred to as PPMF, and evaluate its biosafety profile. The PPMF polymer, which serves as the gelation precursor, was synthesized through a redox radical polymerization and amidation process. The molecular structures of the synthesized polymers were thoroughly characterized using <sup>1</sup>H nuclear magnetic resonance (<sup>1</sup>H NMR) and Fourier transform infrared spectroscopy (FTIR). The PPMF hydrogel was formed <i>via</i> Diels-Alder reactions between the PPMF polymer and four-arm polyethylene glycol maleimide (4-armed-PEG-Mal) cross-linkers. A comprehensive assessment was conducted to evaluate the hydrogel's injectability, swelling ratios, hematotoxicity, biodegradability, and overall biosafety. Both FTIR and <sup>1</sup>H NMR spectra confirmed the successful synthesis of the PPMF polymers. The results revealed that the PPMF hydrogel demonstrated remarkable injectability, favorable swelling ratios, and minimal <i>in vitro</i> cytotoxicity. Upon subcutaneous injection into Kunming mice, the PPMF hydrogel degraded and was absorbed within 25 days. Importantly, the PPMF hydrogel showed no significant physiological or pathological changes in the internal organs of the treated mice. No inflammatory responses were observed at the injection sites, and blood routine and biochemical tests further emphasized the hydrogel's excellent biocompatibility and safety. In conclusion, the PPMF hydrogel's outstanding biosafety and unique properties make it a promising candidate for a wide range of applications in biological fields.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-13"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2526156","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this study is to develop a novel injectable hydrogel, referred to as PPMF, and evaluate its biosafety profile. The PPMF polymer, which serves as the gelation precursor, was synthesized through a redox radical polymerization and amidation process. The molecular structures of the synthesized polymers were thoroughly characterized using 1H nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR). The PPMF hydrogel was formed via Diels-Alder reactions between the PPMF polymer and four-arm polyethylene glycol maleimide (4-armed-PEG-Mal) cross-linkers. A comprehensive assessment was conducted to evaluate the hydrogel's injectability, swelling ratios, hematotoxicity, biodegradability, and overall biosafety. Both FTIR and 1H NMR spectra confirmed the successful synthesis of the PPMF polymers. The results revealed that the PPMF hydrogel demonstrated remarkable injectability, favorable swelling ratios, and minimal in vitro cytotoxicity. Upon subcutaneous injection into Kunming mice, the PPMF hydrogel degraded and was absorbed within 25 days. Importantly, the PPMF hydrogel showed no significant physiological or pathological changes in the internal organs of the treated mice. No inflammatory responses were observed at the injection sites, and blood routine and biochemical tests further emphasized the hydrogel's excellent biocompatibility and safety. In conclusion, the PPMF hydrogel's outstanding biosafety and unique properties make it a promising candidate for a wide range of applications in biological fields.

基于Diels-Alder反应的热敏水凝胶制备及其体内生物安全性研究。
本研究的目的是开发一种新型可注射水凝胶,称为PPMF,并评估其生物安全性。通过氧化还原自由基聚合和酰胺化工艺合成了作为凝胶化前驱体的PPMF聚合物。利用1H核磁共振(1H NMR)和傅里叶变换红外光谱(FTIR)对合成聚合物的分子结构进行了全面表征。PPMF水凝胶是通过PPMF聚合物与四臂聚乙二醇马来酰亚胺(4臂- peg - mal)交联剂之间的Diels-Alder反应形成的。对水凝胶的可注射性、溶胀率、血液毒性、生物降解性和总体生物安全性进行了综合评估。FTIR和1H NMR均证实了PPMF聚合物的成功合成。结果表明,PPMF水凝胶具有显著的可注射性、良好的溶胀率和最小的体外细胞毒性。经昆明小鼠皮下注射后,PPMF水凝胶在25天内降解并被吸收。重要的是,PPMF水凝胶在处理小鼠的内脏中没有显示出明显的生理或病理变化。注射部位未见炎症反应,血常规和生化试验进一步强调了水凝胶良好的生物相容性和安全性。综上所述,PPMF水凝胶具有良好的生物安全性和独特的性能,在生物领域具有广泛的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信