{"title":"Microbiome on a chip: a promising technology for modeling of human organ microbiomes and their interactions.","authors":"Marzieh Ramezani Farani, Saber Saharkhiz, Kimia Feiz, Iraj Alipourfard, Yun Suk Huh","doi":"10.1080/07388551.2025.2531111","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing knowledge of the makeup and role of organ microbiomes has created new possibilities for understanding and managing human illnesses. The models used for animal studies conducted in laboratory settings and live animals may not always offer the necessary insights. One <i>in vitro</i> cell culture system known as organ-on-a-chip technology has garnered interest as a way to collect data that accurately reflects human responses. Organ-on-a-chip (OoC) technology, while accurately simulating the function of tissues and organs, has largely covered the differences between animal and human systems. Microbiome-on-a-chip (MoC) offers benefits over other <i>in vitro</i> procedures, permitting dimensional observation of ecological dynamics, microbial growth, and host-associated interactions while regulating and assessing relevant environmental parameters such as pH and O<sub>2</sub> in real-time. The fabricated MoC platforms can be designed to test microbiome-enabled therapies, to study culture and pharmacology, antibiotic resistance, and to model multi-organ interactions mediated by the microbiome. In the current overview, we provide a translational perspective and discuss different organs, such as: oral, skin, gut and vaginal microbiota on a chip and recently developed MoC-based devices. The commonly used MoC fabrication methods, such as microfluidics and 3D printing, have been explored, and the potential applications of MoC in microbiome engineering have been suggested.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-16"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2025.2531111","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing knowledge of the makeup and role of organ microbiomes has created new possibilities for understanding and managing human illnesses. The models used for animal studies conducted in laboratory settings and live animals may not always offer the necessary insights. One in vitro cell culture system known as organ-on-a-chip technology has garnered interest as a way to collect data that accurately reflects human responses. Organ-on-a-chip (OoC) technology, while accurately simulating the function of tissues and organs, has largely covered the differences between animal and human systems. Microbiome-on-a-chip (MoC) offers benefits over other in vitro procedures, permitting dimensional observation of ecological dynamics, microbial growth, and host-associated interactions while regulating and assessing relevant environmental parameters such as pH and O2 in real-time. The fabricated MoC platforms can be designed to test microbiome-enabled therapies, to study culture and pharmacology, antibiotic resistance, and to model multi-organ interactions mediated by the microbiome. In the current overview, we provide a translational perspective and discuss different organs, such as: oral, skin, gut and vaginal microbiota on a chip and recently developed MoC-based devices. The commonly used MoC fabrication methods, such as microfluidics and 3D printing, have been explored, and the potential applications of MoC in microbiome engineering have been suggested.
期刊介绍:
Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.