Deciphering Cellular Intricacies for Drug Discovery: A Synergistic Approach Combining Cryo-CLEM, Electromechanical Modeling, and AI-Guided Simulations.
Sijia Zhang, Jingsong Ai, Jiasheng Zhao, Zhiwei Yang
{"title":"Deciphering Cellular Intricacies for Drug Discovery: A Synergistic Approach Combining Cryo-CLEM, Electromechanical Modeling, and AI-Guided Simulations.","authors":"Sijia Zhang, Jingsong Ai, Jiasheng Zhao, Zhiwei Yang","doi":"10.2174/0113862073413549250729080059","DOIUrl":null,"url":null,"abstract":"<p><p>Biological membranes and their vesicular derivatives constitute dynamic nanoscale architectures critical to cellular function. Their electromechanical properties and molecular diversity govern processes ranging from vesicle trafficking and signal transduction to pathogen entry and organelle morphogenesis. While decades of foundational research have advanced our understanding of lipid bilayer assembly and membrane protein interactions, achieving a comprehensive, multiscale understanding of membrane dynamics, spanning molecular interactions to cellular-scale behavior, remains a paramount challenge in modern cell biology. This editorial presents recent breakthroughs at the intersection of three transformative domains: cryo- correlative light and electron microscopy (cryo-CLEM), electromechanical theory, and AI-driven simulation, to elucidate their collective impact on resolving membrane complexity. By integrating structural insights, the innovations are revolutionizing the drug discovery pipelines by accelerating candidate screening, reducing false-positive rates, optimizing assay design, and implementing high-density library strategies. It also critically evaluates technical challenges while proposing an actionable roadmap to unify these modalities into cohesive workflows, advancing both basic membrane research and translational therapeutic development.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073413549250729080059","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Biological membranes and their vesicular derivatives constitute dynamic nanoscale architectures critical to cellular function. Their electromechanical properties and molecular diversity govern processes ranging from vesicle trafficking and signal transduction to pathogen entry and organelle morphogenesis. While decades of foundational research have advanced our understanding of lipid bilayer assembly and membrane protein interactions, achieving a comprehensive, multiscale understanding of membrane dynamics, spanning molecular interactions to cellular-scale behavior, remains a paramount challenge in modern cell biology. This editorial presents recent breakthroughs at the intersection of three transformative domains: cryo- correlative light and electron microscopy (cryo-CLEM), electromechanical theory, and AI-driven simulation, to elucidate their collective impact on resolving membrane complexity. By integrating structural insights, the innovations are revolutionizing the drug discovery pipelines by accelerating candidate screening, reducing false-positive rates, optimizing assay design, and implementing high-density library strategies. It also critically evaluates technical challenges while proposing an actionable roadmap to unify these modalities into cohesive workflows, advancing both basic membrane research and translational therapeutic development.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.