Zeolite substrate characterization for Metarhizium robertsii inoculation.

IF 1.9 4区 医学 Q4 BIOPHYSICS
Biointerphases Pub Date : 2025-07-01 DOI:10.1116/6.0004518
Ángel Guillén-Cervantes, Francisco Hernández-Rosas, Blas Schettino-Salomón, José Alberto Aguilar-Ayala, Felipe Francisco Muñoz-Ponce, Juan Hernández-Rosas
{"title":"Zeolite substrate characterization for Metarhizium robertsii inoculation.","authors":"Ángel Guillén-Cervantes, Francisco Hernández-Rosas, Blas Schettino-Salomón, José Alberto Aguilar-Ayala, Felipe Francisco Muñoz-Ponce, Juan Hernández-Rosas","doi":"10.1116/6.0004518","DOIUrl":null,"url":null,"abstract":"<p><p>For this study, zeolite powder served as a substrate for inoculating Metarhizium robertsii to demonstrate the biocompatibility between the entomopathogenic fungus and the zeolite mineral, as the initial step in developing a biological control agent. Our fungal strains were isolated from corpses of spittlebugs (Aeneolamia albofasciata, Hemiptera: Cercopidae) and were identified as M. robertsii based on sequencing of the Internal Transcribed Spacer regions ITS1 and ITS2. Zeolite was characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). XRD and EDS results indicate that zeolite consists of a mixture of Heulandite and Clinoptilolite. EDS analysis shows that oxygen, silicon, and aluminum are the primary chemical components of the zeolite powder, with calcium, magnesium, iron, sodium, and potassium present in smaller amounts. After five days of inoculation, SEM images reveal M. robertsii conidia on the porous surface of zeolite particles, along with hyphal formation. These findings suggest the potential for maintaining M. robertsii spores and mycelium alive within a zeolite substrate under laboratory conditions.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004518","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

For this study, zeolite powder served as a substrate for inoculating Metarhizium robertsii to demonstrate the biocompatibility between the entomopathogenic fungus and the zeolite mineral, as the initial step in developing a biological control agent. Our fungal strains were isolated from corpses of spittlebugs (Aeneolamia albofasciata, Hemiptera: Cercopidae) and were identified as M. robertsii based on sequencing of the Internal Transcribed Spacer regions ITS1 and ITS2. Zeolite was characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). XRD and EDS results indicate that zeolite consists of a mixture of Heulandite and Clinoptilolite. EDS analysis shows that oxygen, silicon, and aluminum are the primary chemical components of the zeolite powder, with calcium, magnesium, iron, sodium, and potassium present in smaller amounts. After five days of inoculation, SEM images reveal M. robertsii conidia on the porous surface of zeolite particles, along with hyphal formation. These findings suggest the potential for maintaining M. robertsii spores and mycelium alive within a zeolite substrate under laboratory conditions.

罗伯特绿僵菌接种的沸石基质表征。
本研究以沸石粉为底物接种罗伯特绿僵菌,以验证昆虫病原真菌与沸石矿物之间的生物相容性,作为开发生物防治剂的第一步。我们的真菌菌株是从白膜衣虫(Aeneolamia albofasciata,半翅目:尾蚴科)的唾液虫尸体中分离得到的,根据其内部转录间隔区ITS1和ITS2的序列鉴定为robertsii。采用x射线衍射(XRD)、扫描电镜(SEM)和能谱(EDS)对沸石进行了表征。XRD和EDS分析结果表明,沸石由斜沸石和斜沸石混合组成。能谱分析表明,氧、硅和铝是沸石粉的主要化学成分,钙、镁、铁、钠和钾的含量较少。接种5天后,SEM图像显示robertsii孢子出现在沸石颗粒多孔表面,菌丝形成。这些发现表明,在实验室条件下,在沸石基质中维持罗伯氏芽孢杆菌孢子和菌丝体存活的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信