Stephen T. Tettelbach, James R. Europe, Christian R. H. Tettelbach, Matthew Schwartz, Jason Havelin, Brigid Maloney, Dennis M. Bonal, Bradley T. Furman, Raymond E. Czaja Jr.
{"title":"Life in a post-eelgrass world: Temporal compression of a spatial refuge from predation","authors":"Stephen T. Tettelbach, James R. Europe, Christian R. H. Tettelbach, Matthew Schwartz, Jason Havelin, Brigid Maloney, Dennis M. Bonal, Bradley T. Furman, Raymond E. Czaja Jr.","doi":"10.1002/ecs2.70367","DOIUrl":null,"url":null,"abstract":"<p>Spatial refugia offered by structurally complex habitats mitigate high rates of predation for many aquatic and terrestrial prey species. These refuges are particularly important for small juvenile marine invertebrates, for which predation often represents the greatest cause of mortality. When the availability or quality of habitat landscapes and refugia are diminished by natural or anthropogenic forces, prey populations face further risk. In this study, we examined the utilization of alternative types of submerged aquatic vegetation (SAV) by juvenile bay scallops, <i>Argopecten irradians</i>, in a system where their historical habitat of eelgrass, <i>Zostera marina</i>, has largely disappeared. We found that scallops settled on and remained attached, above the bottom, to 9 species of macroalgae, 6 of which were fine filamentous or fleshy red algae. Macroalgae thus serve as suitable substrates for scallop larval settlement and early juvenile life, clearly important to successful population rebuilding that occurred following commencement of our restoration efforts. However, the much smaller maximum observed size (2–9 mm) and calculated duration of attachment (5–27 days) of scallops in the canopy of red macroalgae were considerably lower than those previously reported for eelgrass and the green macroalgae <i>Codium fragile</i>. With scallops dropping sooner to the bottom from red macroalgae, at smaller sizes, they are accessible to greater numbers of predator species/sizes and higher rates of predation (as shown in supporting laboratory experiments). Furthermore, this transition occurs well before scallops have undergone an ontogenetic shift to evasive swimming or have grown to reach a refuge in larger size. Fine filamentous red macroalgae, in which juvenile scallops demonstrated the highest frequency of attachment in this study and among the shortest duration in the canopy, now predominate in many areas of the Peconic Bays, New York, where eelgrass was formerly widespread. This apparent habitat degradation/replacement is thus acting to compress the length of time scallops are able to utilize a spatial refuge from predation at a critical life history stage, with potential cascading ontogenetic impacts on the use of a subsequent behavioral refuge and possible negative demographic consequences. Few prior studies have revealed such clear impacts of this kind resulting from habitat loss.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"16 8","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.70367","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecs2.70367","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial refugia offered by structurally complex habitats mitigate high rates of predation for many aquatic and terrestrial prey species. These refuges are particularly important for small juvenile marine invertebrates, for which predation often represents the greatest cause of mortality. When the availability or quality of habitat landscapes and refugia are diminished by natural or anthropogenic forces, prey populations face further risk. In this study, we examined the utilization of alternative types of submerged aquatic vegetation (SAV) by juvenile bay scallops, Argopecten irradians, in a system where their historical habitat of eelgrass, Zostera marina, has largely disappeared. We found that scallops settled on and remained attached, above the bottom, to 9 species of macroalgae, 6 of which were fine filamentous or fleshy red algae. Macroalgae thus serve as suitable substrates for scallop larval settlement and early juvenile life, clearly important to successful population rebuilding that occurred following commencement of our restoration efforts. However, the much smaller maximum observed size (2–9 mm) and calculated duration of attachment (5–27 days) of scallops in the canopy of red macroalgae were considerably lower than those previously reported for eelgrass and the green macroalgae Codium fragile. With scallops dropping sooner to the bottom from red macroalgae, at smaller sizes, they are accessible to greater numbers of predator species/sizes and higher rates of predation (as shown in supporting laboratory experiments). Furthermore, this transition occurs well before scallops have undergone an ontogenetic shift to evasive swimming or have grown to reach a refuge in larger size. Fine filamentous red macroalgae, in which juvenile scallops demonstrated the highest frequency of attachment in this study and among the shortest duration in the canopy, now predominate in many areas of the Peconic Bays, New York, where eelgrass was formerly widespread. This apparent habitat degradation/replacement is thus acting to compress the length of time scallops are able to utilize a spatial refuge from predation at a critical life history stage, with potential cascading ontogenetic impacts on the use of a subsequent behavioral refuge and possible negative demographic consequences. Few prior studies have revealed such clear impacts of this kind resulting from habitat loss.
期刊介绍:
The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.