Enhancing mechanical performance of red soils via lime–phosphogypsum stabilization: A Box–Behnken design approach

Dounia Azerkane, Faiçal El Khazanti, Meriam El Ouahabi, Achraf Harrou, Aicha Boukhriss, Abdoulkader Moussa Issaka, El Khadir Gharibi
{"title":"Enhancing mechanical performance of red soils via lime–phosphogypsum stabilization: A Box–Behnken design approach","authors":"Dounia Azerkane,&nbsp;Faiçal El Khazanti,&nbsp;Meriam El Ouahabi,&nbsp;Achraf Harrou,&nbsp;Aicha Boukhriss,&nbsp;Abdoulkader Moussa Issaka,&nbsp;El Khadir Gharibi","doi":"10.1002/saj2.70111","DOIUrl":null,"url":null,"abstract":"<p>This study evaluates the feasibility of storing phosphogypsum (PG) on lime-stabilized red soils (RS) and quantifies the synergistic stabilization capacity of PG-hydraulic lime (L) blends. Mortar specimens with variable RS/L/PG ratios underwent comprehensive physicochemical (pH, electrical conductivity [EC], X-ray fluorescence [XRF]), geotechnical (Atterberg limits), mineralogical (X-ray diffraction [XRD], Fourier transform infrared [FTIR]), microstructural (scanning electron microscopy [SEM]/energy dispersive spectroscopy [EDS]), thermogravimetric (differential thermal analysis coupled with thermogravimetric analysis [DTA-TG]), and mechanical (unconfined compressive strength [UCS]) characterization. Box–Behnken design (BBD) was applied to delineate the influence of varying proportions of RS, L, and PG on the mechanical performance of stabilized soil composites. The results establish that 10 wt% L with ≤32 wt% PG significantly enhances soil performance. The UCS increased from 1.67 MPa (RS + 2%L) to 4.48 MPa (RS + 10%L + 32%PG), and the plasticity index decreased from 17.47% (untreated RS) to 12.64% (RS + 10%L + 10%PG). Critically, PG addition did not induce ettringite formation despite available sulfate ions (SO<sub>4</sub><sup>2−</sup>), aluminol/silicate groups, Ca<sup>2+</sup>, and OH<sup>−</sup> ions, eliminating the risks of sulfate-induced expansion. Scanning electron microscopy (SEM) revealed rod-shaped gypsum microcrystals (CaSO<sub>4</sub>·2H<sub>2</sub>O) on particle surfaces, accelerating hydration kinetics and strengthening mechanical performance through microstructural densification. This study establishes PG as a sustainable co-additive that concurrently mitigates industrial waste liabilities and enhances geotechnical performance in marginal red soils. Component synergies rigorously quantified via BBD provide a mechanistic blueprint for eco-engineered infrastructure and circular waste management strategies.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings - Soil Science Society of America","FirstCategoryId":"1085","ListUrlMain":"https://acsess.onlinelibrary.wiley.com/doi/10.1002/saj2.70111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the feasibility of storing phosphogypsum (PG) on lime-stabilized red soils (RS) and quantifies the synergistic stabilization capacity of PG-hydraulic lime (L) blends. Mortar specimens with variable RS/L/PG ratios underwent comprehensive physicochemical (pH, electrical conductivity [EC], X-ray fluorescence [XRF]), geotechnical (Atterberg limits), mineralogical (X-ray diffraction [XRD], Fourier transform infrared [FTIR]), microstructural (scanning electron microscopy [SEM]/energy dispersive spectroscopy [EDS]), thermogravimetric (differential thermal analysis coupled with thermogravimetric analysis [DTA-TG]), and mechanical (unconfined compressive strength [UCS]) characterization. Box–Behnken design (BBD) was applied to delineate the influence of varying proportions of RS, L, and PG on the mechanical performance of stabilized soil composites. The results establish that 10 wt% L with ≤32 wt% PG significantly enhances soil performance. The UCS increased from 1.67 MPa (RS + 2%L) to 4.48 MPa (RS + 10%L + 32%PG), and the plasticity index decreased from 17.47% (untreated RS) to 12.64% (RS + 10%L + 10%PG). Critically, PG addition did not induce ettringite formation despite available sulfate ions (SO42−), aluminol/silicate groups, Ca2+, and OH ions, eliminating the risks of sulfate-induced expansion. Scanning electron microscopy (SEM) revealed rod-shaped gypsum microcrystals (CaSO4·2H2O) on particle surfaces, accelerating hydration kinetics and strengthening mechanical performance through microstructural densification. This study establishes PG as a sustainable co-additive that concurrently mitigates industrial waste liabilities and enhances geotechnical performance in marginal red soils. Component synergies rigorously quantified via BBD provide a mechanistic blueprint for eco-engineered infrastructure and circular waste management strategies.

Abstract Image

Abstract Image

Abstract Image

通过石灰-磷石膏稳定提高红壤的机械性能:Box-Behnken设计方法
本研究评估了磷石膏(PG)在石灰稳定红壤(RS)上储存的可行性,并量化了磷石膏-水力石灰(L)混合物的协同稳定能力。不同RS/L/PG比值的砂浆试样进行了综合物化(pH、电导率[EC]、x射线荧光[XRF])、岩土(Atterberg极限)、矿物学(x射线衍射[XRD]、傅里叶变换红外[FTIR])、微观结构(扫描电子显微镜[SEM]/能谱[EDS])、热重(差热分析结合热重分析[DTA-TG])、机械(无侧限抗压强度[UCS])表征。采用Box-Behnken设计(BBD)来描述RS、L和PG的不同比例对稳定土复合材料力学性能的影响。结果表明,10 wt% L +≤32 wt% PG显著提高土壤性能。UCS从1.67 MPa (RS + 2%L)增加到4.48 MPa (RS + 10%L + 32%PG),塑性指数从17.47% (RS + 10%L + 10%PG)下降到12.64% (RS + 10%L + 10%PG)。关键的是,尽管存在硫酸盐离子(SO42−)、铝醇/硅酸盐基团、Ca2+和OH−离子,但PG的加入不会诱导钙矾石的形成,从而消除了硫酸盐诱导膨胀的风险。扫描电镜(SEM)显示,颗粒表面存在棒状的石膏微晶(CaSO4·2H2O),通过微观结构致密化加速水化动力学,增强力学性能。本研究确定PG作为一种可持续的共添加剂,可以同时减轻工业废物的责任,并提高边缘红壤的岩土性能。通过BBD严格量化的组件协同作用为生态工程基础设施和循环废物管理策略提供了机制蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信