Enhancing Chemical Stability of Pt Ultrathin Films on Substrates by Controlled Intermixing of Pt-Zn at Interface

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lasya Peela, Daljin Jacob, Vinod Sarky, Ashok Allamula, Sirish Pandiri, Parasuraman Swaminathan, Satyesh Kumar Yadav
{"title":"Enhancing Chemical Stability of Pt Ultrathin Films on Substrates by Controlled Intermixing of Pt-Zn at Interface","authors":"Lasya Peela,&nbsp;Daljin Jacob,&nbsp;Vinod Sarky,&nbsp;Ashok Allamula,&nbsp;Sirish Pandiri,&nbsp;Parasuraman Swaminathan,&nbsp;Satyesh Kumar Yadav","doi":"10.1002/adem.202500322","DOIUrl":null,"url":null,"abstract":"<p>Platinum (Pt) ultrathin films supported on substrates can enable reduced metal loading, but their long-term stability in harsh environments remains a challenge. This work establishes that an optimal thickness of the intermediate adhesion layer can provide this stability. Pt ultrathin films (20 nm) are deposited on Silicon substrates using a Zinc (Zn:4, 6 nm) adhesion layer in a DC magnetron sputtering system. Results show that the addition of the Zn layer nearly doubled the adhesion strength of Pt films, from 420 to 780 μN. A maximum of 4 nm Zn leads to longevity of Pt films in 1 <span>m </span>H<sub>2</sub>SO<sub>4</sub> environments with negligible variation in sheet resistance (15–20 Ω sq<sup>−1</sup>) for over 4 months. Films with 6 nm Zn deteriorated within 2 weeks. Observed adhesion and stability are due to limited (for 4 nm) and complete intermixing (for 6 nm) of Zn and Pt, resulting in the formation of Pt-Zn solid solution. Solid solution formation is validated by X-ray photoemission spectroscopy, X-ray diffraction, and density functional theory. This study opens up the possibility of using engineered adhesion layers to enhance the durability of ultrathin metal films for a wide range of industrial applications.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 15","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adem.202500322","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Platinum (Pt) ultrathin films supported on substrates can enable reduced metal loading, but their long-term stability in harsh environments remains a challenge. This work establishes that an optimal thickness of the intermediate adhesion layer can provide this stability. Pt ultrathin films (20 nm) are deposited on Silicon substrates using a Zinc (Zn:4, 6 nm) adhesion layer in a DC magnetron sputtering system. Results show that the addition of the Zn layer nearly doubled the adhesion strength of Pt films, from 420 to 780 μN. A maximum of 4 nm Zn leads to longevity of Pt films in 1 m H2SO4 environments with negligible variation in sheet resistance (15–20 Ω sq−1) for over 4 months. Films with 6 nm Zn deteriorated within 2 weeks. Observed adhesion and stability are due to limited (for 4 nm) and complete intermixing (for 6 nm) of Zn and Pt, resulting in the formation of Pt-Zn solid solution. Solid solution formation is validated by X-ray photoemission spectroscopy, X-ray diffraction, and density functional theory. This study opens up the possibility of using engineered adhesion layers to enhance the durability of ultrathin metal films for a wide range of industrial applications.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

通过控制界面Pt- zn混合提高基底上Pt超薄膜的化学稳定性
支撑在基板上的铂(Pt)超薄膜可以减少金属负载,但它们在恶劣环境中的长期稳定性仍然是一个挑战。这项工作确定了中间粘附层的最佳厚度可以提供这种稳定性。在直流磁控溅射系统中,使用锌(Zn: 4,6 nm)粘附层在硅衬底上沉积了Pt超薄膜(20 nm)。结果表明,锌层的加入使Pt膜的附着强度从420 μN提高到780 μN,几乎增加了一倍。最大4 nm的Zn可以使Pt薄膜在1 m H2SO4环境中使用寿命超过4个月,而薄片电阻的变化可以忽略不计(15-20 Ω sq−1)。6纳米锌的薄膜在2周内变质。观察到的附着力和稳定性是由于Zn和Pt的有限(4 nm)和完全混合(6 nm),导致Pt-Zn固溶体的形成。通过x射线光发射光谱、x射线衍射和密度泛函理论验证了固溶体的形成。这项研究开辟了使用工程粘合层来提高超薄金属薄膜耐久性的可能性,可用于广泛的工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信