Satellite-Retrieved Cloud Base Droplet Number Concentration Improved by In-Cloud Adiabatic Fraction

IF 3.4 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Yichuan Wang, Yannian Zhu, Daniel Rosenfeld, Minghuai Wang, Xin Lu
{"title":"Satellite-Retrieved Cloud Base Droplet Number Concentration Improved by In-Cloud Adiabatic Fraction","authors":"Yichuan Wang,&nbsp;Yannian Zhu,&nbsp;Daniel Rosenfeld,&nbsp;Minghuai Wang,&nbsp;Xin Lu","doi":"10.1029/2025JD043789","DOIUrl":null,"url":null,"abstract":"<p>Accurate retrieval of cloud droplet number concentration (<i>N</i><sub>d</sub>) is essential for understanding aerosol-cloud interactions (ACI) and their climatic impacts. Conventional satellite-based <i>N</i><sub>d</sub> retrieval methods typically assume adiabatic clouds (cloud adiabatic fraction (<i>f</i><sub>ad</sub>) = 1), leading to significant underestimations, particularly in environments characterized by low <i>f</i><sub>ad</sub>. Furthermore, conventional methods retrieve <i>N</i><sub>d</sub> near cloud tops, often much lower than near the cloud base. This study applies the recently developed <i>f</i><sub>ad</sub> retrievals to retrieve cloud base <i>N</i><sub>d</sub> accurately. The retrieval is based on the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard polar orbiting satellites. The validation was done against ship-based measurements over the ocean at the Australian Great Barrier Reef. The results indicate that the traditional adiabatic assumption resulted in cloud base <i>N</i><sub>d</sub> underestimations by a factor of 2.73. To resolve this, we implemented two averaged-<i>f</i><sub>ad</sub> methods and one pixel-level <i>f</i><sub>ad</sub> correction. Averaged-<i>f</i><sub>ad</sub>-based corrections improve <i>N</i><sub>d</sub> accuracy but yield higher root mean square errors (RMSE) and lower correlation coefficients (<i>R</i>) due to mean − value reliance. Pixel-level <i>f</i><sub>ad</sub>-based correction minimizes bias by avoiding error amplification from <i>f</i><sub>ad</sub> spatial averaging. When <i>N</i><sub>d</sub> retrieved by pixels with cloud optical depth larger than the 50th value, the correction optimizes the following results: slope ∼1 (0.983 ± 0.088), lowest RMSE (30.365 ± 12.212 cm<sup>−3</sup>), highest <i>R</i> (0.728, <i>P</i> &lt; 0.05), narrowest metrics confidence intervals, and ±30% validated error. This study underscores the importance of pixel-level <i>f</i><sub>ad</sub> correction in satellite-based <i>N</i><sub>d</sub> retrieval, offering improved accuracy for climate modeling and weather forecasting. Future work should expand validation to diverse regions and seasons to further assess the method's generalizability and limitations.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 15","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JD043789","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate retrieval of cloud droplet number concentration (Nd) is essential for understanding aerosol-cloud interactions (ACI) and their climatic impacts. Conventional satellite-based Nd retrieval methods typically assume adiabatic clouds (cloud adiabatic fraction (fad) = 1), leading to significant underestimations, particularly in environments characterized by low fad. Furthermore, conventional methods retrieve Nd near cloud tops, often much lower than near the cloud base. This study applies the recently developed fad retrievals to retrieve cloud base Nd accurately. The retrieval is based on the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard polar orbiting satellites. The validation was done against ship-based measurements over the ocean at the Australian Great Barrier Reef. The results indicate that the traditional adiabatic assumption resulted in cloud base Nd underestimations by a factor of 2.73. To resolve this, we implemented two averaged-fad methods and one pixel-level fad correction. Averaged-fad-based corrections improve Nd accuracy but yield higher root mean square errors (RMSE) and lower correlation coefficients (R) due to mean − value reliance. Pixel-level fad-based correction minimizes bias by avoiding error amplification from fad spatial averaging. When Nd retrieved by pixels with cloud optical depth larger than the 50th value, the correction optimizes the following results: slope ∼1 (0.983 ± 0.088), lowest RMSE (30.365 ± 12.212 cm−3), highest R (0.728, P < 0.05), narrowest metrics confidence intervals, and ±30% validated error. This study underscores the importance of pixel-level fad correction in satellite-based Nd retrieval, offering improved accuracy for climate modeling and weather forecasting. Future work should expand validation to diverse regions and seasons to further assess the method's generalizability and limitations.

云内绝热分数提高卫星反演云基液滴数浓度
云滴数浓度(Nd)的精确反演对于理解气溶胶-云相互作用(ACI)及其气候影响至关重要。传统的基于卫星的Nd检索方法通常假设绝热云(云绝热分数(fad) = 1),导致严重低估,特别是在低fad特征的环境中。此外,传统方法在云顶附近获得Nd,通常比云底附近低得多。本研究采用近年来发展起来的fad检索方法对云基Nd进行精确检索。检索基于极地轨道卫星上的可见红外成像辐射计套件(VIIRS)。验证是在澳大利亚大堡礁的海洋上进行的基于船只的测量。结果表明,传统的绝热假设导致云底Nd低估了2.73倍。为了解决这个问题,我们实现了两个平均fad方法和一个像素级fad校正。基于平均潮流的修正提高了Nd精度,但由于平均值依赖,产生了更高的均方根误差(RMSE)和更低的相关系数(R)。像素级基于fad的校正通过避免由fad空间平均引起的误差放大来最大限度地减少偏差。当云光学深度大于50的像元反演Nd时,校正优化的结果如下:斜率~ 1(0.983±0.088),最小RMSE(30.365±12.212 cm−3),最高R (0.728, P <;0.05),最窄的指标置信区间和±30%的验证误差。该研究强调了基于卫星的Nd检索中像素级fad校正的重要性,为气候模拟和天气预报提供了更高的精度。未来的工作应该将验证扩展到不同的地区和季节,以进一步评估该方法的普遍性和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信