The Role of Cellular Stress, Antioxidant System Response, Mitochondrial Function, and Metabolic Alterations in the Pathophysiology of Propionic Acidemia: A Systematic Review
{"title":"The Role of Cellular Stress, Antioxidant System Response, Mitochondrial Function, and Metabolic Alterations in the Pathophysiology of Propionic Acidemia: A Systematic Review","authors":"Neşe Vardar Acar, R. Köksal Özgül","doi":"10.1002/jcp.70072","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Propionic acidemia (PA) is a rare, life-threatening inherited metabolic disorder. Despite early therapy and effective metabolic control with current treatments, patients with PA face recurrent severe metabolic decompensations and multisystemic complications. The exact pathophysiological mechanisms of these complications remain unclear. This systematic review aims to enhance understanding of molecular mechanisms underlying PA by simultaneously evaluating ROS-mediated cellular stress, antioxidant response, mitochondrial dysfunction, metabolic alterations, and mitohormesis. For this purpose, a literature search was conducted across PubMed, Scopus, ScienceDirect, Web of Science, Cochrane Library, and ClinicalTrials.gov databases. This review included 42 experimental studies, comprising 13 human studies, 27 animal studies, and 2 studies involving both animals (rat and mice/mouse) and humans. As a result: (i) both oxidative and reductive stress can occur in PA, with individual variability; (ii) ROS-mediated cellular damage generally accompanies PA; (iii) the antioxidant response can vary depending on the type, severity, and duration of cellular stress; (iv) secondary mitochondrial dysfunction accompanies PA; (v) ROS-mediated stress effects correlate with alterations in interconnected metabolic pathways in PA; and (vi) mitohormesis can play a role in PA. In conclusion, using antioxidants or preventive treatments for PA without assessing cellular stress during diagnosis and treatment may further disturb the delicate oxidant–antioxidant balance. Simultaneous evaluation of ROS-mediated cellular stress and associated pathways in PA has potential to both revise existing treatments and discover new therapies, thereby improving the quality of life and longevity of patients with PA, as well as elucidating the unclear pathophysiology of PA.</p></div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 8","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70072","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Propionic acidemia (PA) is a rare, life-threatening inherited metabolic disorder. Despite early therapy and effective metabolic control with current treatments, patients with PA face recurrent severe metabolic decompensations and multisystemic complications. The exact pathophysiological mechanisms of these complications remain unclear. This systematic review aims to enhance understanding of molecular mechanisms underlying PA by simultaneously evaluating ROS-mediated cellular stress, antioxidant response, mitochondrial dysfunction, metabolic alterations, and mitohormesis. For this purpose, a literature search was conducted across PubMed, Scopus, ScienceDirect, Web of Science, Cochrane Library, and ClinicalTrials.gov databases. This review included 42 experimental studies, comprising 13 human studies, 27 animal studies, and 2 studies involving both animals (rat and mice/mouse) and humans. As a result: (i) both oxidative and reductive stress can occur in PA, with individual variability; (ii) ROS-mediated cellular damage generally accompanies PA; (iii) the antioxidant response can vary depending on the type, severity, and duration of cellular stress; (iv) secondary mitochondrial dysfunction accompanies PA; (v) ROS-mediated stress effects correlate with alterations in interconnected metabolic pathways in PA; and (vi) mitohormesis can play a role in PA. In conclusion, using antioxidants or preventive treatments for PA without assessing cellular stress during diagnosis and treatment may further disturb the delicate oxidant–antioxidant balance. Simultaneous evaluation of ROS-mediated cellular stress and associated pathways in PA has potential to both revise existing treatments and discover new therapies, thereby improving the quality of life and longevity of patients with PA, as well as elucidating the unclear pathophysiology of PA.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.