Screening of single-walled CNTs and SiNTs for CO2 capture and H2 separation via water-gas shift reaction

Xuan Peng
{"title":"Screening of single-walled CNTs and SiNTs for CO2 capture and H2 separation via water-gas shift reaction","authors":"Xuan Peng","doi":"10.1016/j.nxmate.2025.101033","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study was to screen single-walled CNTs and SiNTs suitable for CO<sub>2</sub> capture and H<sub>2</sub> separation in the water-gas shift (WGS) reaction. Simulation analysis of 787 CNTs and 787 SiNTs reveals that nanotube radius plays a critical role in determining CO₂/H₂ selectivity and CO equilibrium conversion. Among CNTs, (10,10) and (15,9) demonstrated the best CO<sub>2</sub>/H<sub>2</sub> selectivity and CO<sub>2</sub> adsorption capacity. In SiNTs, (6,6) and (9,9) were considered the best choices due to their higher CO<sub>2</sub>/H<sub>2</sub> selectivity and CO<sub>2</sub> adsorption capacity. SiNTs showed stronger gas adsorption capabilities and higher selectivity compared to CNTs, mainly attributed to their unique structural characteristics. Furthermore, changes in pressure significantly affected the reaction conditions within the nanotubes, especially the changes in CO<sub>2</sub> adsorption and mole fraction at low pressures. In conclusion, SiNTs have a clear advantage over CNTs in CO<sub>2</sub> capture and H<sub>2</sub> separation, offering new possibilities for future applications in carbon capture and hydrogen energy fields.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"9 ","pages":"Article 101033"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825005519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to screen single-walled CNTs and SiNTs suitable for CO2 capture and H2 separation in the water-gas shift (WGS) reaction. Simulation analysis of 787 CNTs and 787 SiNTs reveals that nanotube radius plays a critical role in determining CO₂/H₂ selectivity and CO equilibrium conversion. Among CNTs, (10,10) and (15,9) demonstrated the best CO2/H2 selectivity and CO2 adsorption capacity. In SiNTs, (6,6) and (9,9) were considered the best choices due to their higher CO2/H2 selectivity and CO2 adsorption capacity. SiNTs showed stronger gas adsorption capabilities and higher selectivity compared to CNTs, mainly attributed to their unique structural characteristics. Furthermore, changes in pressure significantly affected the reaction conditions within the nanotubes, especially the changes in CO2 adsorption and mole fraction at low pressures. In conclusion, SiNTs have a clear advantage over CNTs in CO2 capture and H2 separation, offering new possibilities for future applications in carbon capture and hydrogen energy fields.
单壁碳纳米管和SiNTs在水气转换反应中捕集CO2和分离H2的筛选
本研究的目的是筛选适用于水气转换(WGS)反应中CO2捕获和H2分离的单壁CNTs和SiNTs。对787 CNTs和787 SiNTs的模拟分析表明,纳米管半径对CO₂/H₂选择性和CO平衡转化起着关键作用。其中,(10,10)和(15,9)表现出最好的CO2/H2选择性和CO2吸附能力。在SiNTs中,(6,6)和(9,9)被认为是最佳选择,因为它们具有较高的CO2/H2选择性和CO2吸附能力。与碳纳米管相比,SiNTs具有更强的气体吸附能力和更高的选择性,这主要归功于其独特的结构特性。此外,压力的变化显著影响了纳米管内的反应条件,特别是在低压下CO2吸附和摩尔分数的变化。综上所述,sint在CO2捕获和H2分离方面具有明显的优势,为未来在碳捕获和氢能领域的应用提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信