Evaluation of biological properties of green-synthesized ZnSe quantum dots using microfluidic systems: A novel approach to enhancing antibacterial activity

IF 8.7 Q1 CHEMISTRY, PHYSICAL
Zinab Moradi Alvand , Fateme Aghamir , Hamid Reza Rajabi , Hasan Rafati
{"title":"Evaluation of biological properties of green-synthesized ZnSe quantum dots using microfluidic systems: A novel approach to enhancing antibacterial activity","authors":"Zinab Moradi Alvand ,&nbsp;Fateme Aghamir ,&nbsp;Hamid Reza Rajabi ,&nbsp;Hasan Rafati","doi":"10.1016/j.apsadv.2025.100812","DOIUrl":null,"url":null,"abstract":"<div><div>This study developed a green, eco-friendly, and rapid method for synthesizing zinc selenide quantum dots (ZnSe QDs) using the aqueous extract of <em>Ficus johannis</em> as a natural reducing and stabilizing agent. The extract was prepared through ultrasonic treatment at 40 °C for 15 min, enabling the synthesis of ZnSe QDs via the reaction between zinc nitrate and selenium dioxide. The ZnSe QDs were characterized using UV–Vis spectroscopy (absorption at ∼410 nm), fluorescence spectroscopy (emission at ∼473 nm), transmission electron microscopy (spherical morphology), and X-ray diffraction, (crystalline structure), confirming their spherical shape and average size of 6.9±1.2 nm. The synthesized ZnSe QDs demonstrated significant antibacterial activity, with minimum inhibitory concentration values of 0.8 mg/mL against Gram-positive <em>B. subtilis</em> and 1.6 mg/mL against Gram-negative <em>Escherichia coli</em>. Mechanistic studies revealed damage to bacterial membranes via potassium leakage and protein/nucleic acid release, supported by scanning electron microscopy observations of bacterial cell lysis. Using a microfluidic system further enhanced antibacterial efficacy, enabling faster and higher potassium leakage than conventional methods. Toxicity assays using <em>Allium cepa</em> bulbs revealed cytotoxic effects, suggesting the need for further research to mitigate toxicity for biomedical applications. Overall, this study showcases a green synthesis method with promising potential in nanomedicine.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"29 ","pages":"Article 100812"},"PeriodicalIF":8.7000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925001205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study developed a green, eco-friendly, and rapid method for synthesizing zinc selenide quantum dots (ZnSe QDs) using the aqueous extract of Ficus johannis as a natural reducing and stabilizing agent. The extract was prepared through ultrasonic treatment at 40 °C for 15 min, enabling the synthesis of ZnSe QDs via the reaction between zinc nitrate and selenium dioxide. The ZnSe QDs were characterized using UV–Vis spectroscopy (absorption at ∼410 nm), fluorescence spectroscopy (emission at ∼473 nm), transmission electron microscopy (spherical morphology), and X-ray diffraction, (crystalline structure), confirming their spherical shape and average size of 6.9±1.2 nm. The synthesized ZnSe QDs demonstrated significant antibacterial activity, with minimum inhibitory concentration values of 0.8 mg/mL against Gram-positive B. subtilis and 1.6 mg/mL against Gram-negative Escherichia coli. Mechanistic studies revealed damage to bacterial membranes via potassium leakage and protein/nucleic acid release, supported by scanning electron microscopy observations of bacterial cell lysis. Using a microfluidic system further enhanced antibacterial efficacy, enabling faster and higher potassium leakage than conventional methods. Toxicity assays using Allium cepa bulbs revealed cytotoxic effects, suggesting the need for further research to mitigate toxicity for biomedical applications. Overall, this study showcases a green synthesis method with promising potential in nanomedicine.

Abstract Image

利用微流体系统评价绿色合成ZnSe量子点的生物学特性:一种增强抗菌活性的新方法
本研究开发了一种绿色、环保、快速的合成硒化锌量子点(ZnSe QDs)的方法,该方法以无花果水提取物为天然还原剂和稳定剂。将提取液在40℃下超声处理15 min,通过硝酸锌与二氧化硒的反应合成ZnSe量子点。利用紫外可见光谱(吸收~ 410 nm)、荧光光谱(发射~ 473 nm)、透射电镜(球形形貌)和x射线衍射(晶体结构)对ZnSe量子点进行了表征,证实了它们的球形和平均尺寸为6.9±1.2 nm。合成的ZnSe量子点对革兰氏阳性枯草芽孢杆菌的最小抑菌浓度为0.8 mg/mL,对革兰氏阴性大肠杆菌的最小抑菌浓度为1.6 mg/mL。机制研究揭示了细菌膜的损伤通过钾泄漏和蛋白质/核酸释放,并通过扫描电镜观察细菌细胞裂解。使用微流控系统进一步提高了抗菌效果,与传统方法相比,可以实现更快、更高的钾泄漏。使用葱球茎的毒性试验显示细胞毒性作用,表明需要进一步研究以减轻生物医学应用的毒性。总的来说,本研究展示了一种绿色合成方法,在纳米医学中具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信