{"title":"Magneto-photoacoustic coupling: A pathway to optical-resolution electrical conductivity imaging","authors":"Songqing Xie , Zhuojun Xie , Shuai Na","doi":"10.1016/j.pacs.2025.100755","DOIUrl":null,"url":null,"abstract":"<div><div>Electrical conductivity is a critical biomarker for cellular activity and a fundamental parameter in material science. However, achieving label-free, contact-free conductivity measurements with optical-scale resolution remains a challenge. Here, we introduce a magneto-photoacoustic coupling effect that enables conductivity mapping through photoacoustic excitation in the presence of a static magnetic field. The governing equation for this phenomenon is derived, demonstrating a linear relationship between the induced photoacoustic pressure and the product of the local magnetic flux density squared and electrical conductivity. This theoretical framework is further validated using numerical simulation, which showcases the method’s capability for optical-resolution conductivity imaging. The proposed approach unlocks new opportunities for applications ranging from real-time tracking of neuronal ion channel dynamics to nanoscale defect characterization in metallic and semiconductor materials.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"45 ","pages":"Article 100755"},"PeriodicalIF":6.8000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597925000783","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrical conductivity is a critical biomarker for cellular activity and a fundamental parameter in material science. However, achieving label-free, contact-free conductivity measurements with optical-scale resolution remains a challenge. Here, we introduce a magneto-photoacoustic coupling effect that enables conductivity mapping through photoacoustic excitation in the presence of a static magnetic field. The governing equation for this phenomenon is derived, demonstrating a linear relationship between the induced photoacoustic pressure and the product of the local magnetic flux density squared and electrical conductivity. This theoretical framework is further validated using numerical simulation, which showcases the method’s capability for optical-resolution conductivity imaging. The proposed approach unlocks new opportunities for applications ranging from real-time tracking of neuronal ion channel dynamics to nanoscale defect characterization in metallic and semiconductor materials.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.