Alongshore variability in wave runup and inner surfzone wave conditions on an intermediate beach

IF 4.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Annika O’Dea , Britt Raubenheimer , Katherine Brodie , Steve Elgar
{"title":"Alongshore variability in wave runup and inner surfzone wave conditions on an intermediate beach","authors":"Annika O’Dea ,&nbsp;Britt Raubenheimer ,&nbsp;Katherine Brodie ,&nbsp;Steve Elgar","doi":"10.1016/j.coastaleng.2025.104822","DOIUrl":null,"url":null,"abstract":"<div><div>Alongshore and temporal variability in wave runup and inner surfzone wave conditions are investigated on an intermediate beach using lidar-derived elevation transect timeseries. The lidar scanners were deployed at two alongshore locations separated by <span><math><mo>∼</mo></math></span>330 m at the U.S. Army Engineer Research and Development Center Field Research Facility in Duck, NC and collected 30 min (41 min) linescan time series at 7.1 Hz (5 Hz) each hour over an 11-day period before, during, and after Hurricane Matthew in October 2016. Runup and water surface-elevation time series at the estimated 0.5-m depth contour were used to determine the extreme runup <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mtext>%</mtext></mrow></msub></math></span>, the mean runup and inner surfzone water surface elevation, and the significant runup and inner-surf wave heights across sea-swell, infragravity, and all frequency bands. Offshore wave conditions were determined from an array of pressure gauges located in <span><math><mo>∼</mo></math></span>8-m water depth. Results show that the significant wave height in the sea-swell frequency band <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>S</mi><mi>S</mi></mrow></msub></math></span> was intermittently depth-limited in the inner surf zone, with the ratio of significant sea-swell wave height in the inner surf zone to that in about 8-m depth (<span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>S</mi><mi>S</mi><mo>,</mo><mi>I</mi><mi>S</mi><mi>Z</mi></mrow></msub></math></span>/<span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>S</mi><mi>S</mi><mo>,</mo><mn>8</mn><mspace></mspace><mi>m</mi></mrow></msub></math></span>) ranging from 0.42 to 1.31 during low-energy conditions and from 0.19 to 0.39 during high-energy conditions. Significant temporal variability in runup parameters was observed over the 11-day period, with <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mtext>%</mtext></mrow></msub></math></span> ranging from 1.07 to 3.07 m at the southern lidar location and from 1.45 to 3.36 m at the northern lidar location. Alongshore differences in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mtext>%</mtext></mrow></msub></math></span> ranged from 0.00 to 0.90 m, with both <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mtext>%</mtext></mrow></msub></math></span> and the significant swash height <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>s</mi><mi>i</mi><mi>g</mi></mrow></msub></math></span> typically larger at the northern lidar location. Alongshore variability in most inner surfzone and runup parameters was largest during low-energy offshore wave conditions when the inner surf zone was unsaturated, although this trend was weakest in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mtext>%</mtext></mrow></msub></math></span>. The mean runup elevation <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>m</mi><mi>e</mi><mi>a</mi><mi>n</mi></mrow></msub></math></span> above the still water level was only weakly correlated with the wave-driven super-elevation of the water surface in the inner surf zone (<span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi><mi>e</mi><mi>a</mi><mi>n</mi></mrow></msub></math></span>, R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> = 0.23), suggesting that wave-breaking-induced setup is only one factor contributing to <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>m</mi><mi>e</mi><mi>a</mi><mi>n</mi></mrow></msub></math></span>. Although the significant sea-swell swash height <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>S</mi><mi>S</mi></mrow></msub></math></span> and alongshore differences in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>S</mi><mi>S</mi></mrow></msub></math></span> were correlated with foreshore beach slope <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>f</mi><mi>o</mi><mi>r</mi><mi>e</mi><mi>s</mi><mi>h</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow></msub></math></span> (R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> = 0.59 and R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> = 0.70, respectively), <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mtext>%</mtext></mrow></msub></math></span>, <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>m</mi><mi>e</mi><mi>a</mi><mi>n</mi></mrow></msub></math></span>, and alongshore variations thereof were uncorrelated with <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>f</mi><mi>o</mi><mi>r</mi><mi>e</mi><mi>s</mi><mi>h</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow></msub></math></span>. <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mtext>%</mtext></mrow></msub></math></span> and <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>m</mi><mi>e</mi><mi>a</mi><mi>n</mi></mrow></msub></math></span> were correlated with the significant wave height in the inner surf zone <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mi>i</mi><mi>g</mi><mo>,</mo><mi>I</mi><mi>S</mi><mi>Z</mi></mrow></msub></math></span> (R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> = 0.61 and R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> = 0.72, respectively), which is strongly influenced by wave dissipation patterns across the surf zone. These results suggest that while <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>f</mi><mi>o</mi><mi>r</mi><mi>e</mi><mi>s</mi><mi>h</mi><mi>o</mi><mi>r</mi><mi>e</mi></mrow></msub></math></span> affects the magnitude of swash oscillations about the mean, it has a smaller role in the total elevation reached by runup on intermediate beaches. Furthermore, the results illustrate the importance of surfzone bathymetry and the resulting temporal and alongshore variations of inner surfzone wave heights to the extreme and mean runup.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"202 ","pages":"Article 104822"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383925001279","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Alongshore and temporal variability in wave runup and inner surfzone wave conditions are investigated on an intermediate beach using lidar-derived elevation transect timeseries. The lidar scanners were deployed at two alongshore locations separated by 330 m at the U.S. Army Engineer Research and Development Center Field Research Facility in Duck, NC and collected 30 min (41 min) linescan time series at 7.1 Hz (5 Hz) each hour over an 11-day period before, during, and after Hurricane Matthew in October 2016. Runup and water surface-elevation time series at the estimated 0.5-m depth contour were used to determine the extreme runup R2%, the mean runup and inner surfzone water surface elevation, and the significant runup and inner-surf wave heights across sea-swell, infragravity, and all frequency bands. Offshore wave conditions were determined from an array of pressure gauges located in 8-m water depth. Results show that the significant wave height in the sea-swell frequency band HSS was intermittently depth-limited in the inner surf zone, with the ratio of significant sea-swell wave height in the inner surf zone to that in about 8-m depth (HSS,ISZ/HSS,8m) ranging from 0.42 to 1.31 during low-energy conditions and from 0.19 to 0.39 during high-energy conditions. Significant temporal variability in runup parameters was observed over the 11-day period, with R2% ranging from 1.07 to 3.07 m at the southern lidar location and from 1.45 to 3.36 m at the northern lidar location. Alongshore differences in R2% ranged from 0.00 to 0.90 m, with both R2% and the significant swash height Rsig typically larger at the northern lidar location. Alongshore variability in most inner surfzone and runup parameters was largest during low-energy offshore wave conditions when the inner surf zone was unsaturated, although this trend was weakest in R2%. The mean runup elevation Rmean above the still water level was only weakly correlated with the wave-driven super-elevation of the water surface in the inner surf zone (Zmean, R2 = 0.23), suggesting that wave-breaking-induced setup is only one factor contributing to Rmean. Although the significant sea-swell swash height RSS and alongshore differences in RSS were correlated with foreshore beach slope βforeshore (R2 = 0.59 and R2 = 0.70, respectively), R2%, Rmean, and alongshore variations thereof were uncorrelated with βforeshore. R2% and Rmean were correlated with the significant wave height in the inner surf zone Hsig,ISZ (R2 = 0.61 and R2 = 0.72, respectively), which is strongly influenced by wave dissipation patterns across the surf zone. These results suggest that while βforeshore affects the magnitude of swash oscillations about the mean, it has a smaller role in the total elevation reached by runup on intermediate beaches. Furthermore, the results illustrate the importance of surfzone bathymetry and the resulting temporal and alongshore variations of inner surfzone wave heights to the extreme and mean runup.
在一个中间的海滩上,波浪上升和内表面带波浪条件的沿岸变化
利用激光雷达衍生的高程样条时间序列研究了中间海滩上波浪上升和内表面带波浪条件的沿岸和时间变化。激光雷达扫描仪部署在北卡罗来纳州Duck的美国陆军工程研究与开发中心现场研究设施的两个沿岸位置,相距约330米,并在2016年10月飓风马修之前,期间和之后的11天内以每小时7.1 Hz (5 Hz)的频率收集30分钟(41分钟)的线性扫描时间序列。利用估算的0.5 m深度等值线上的浪涌和水面高程时间序列,确定了极端浪涌R2%、平均浪涌和内表层水面高程,以及海浪、重力和各频段的显著浪涌和内浪高。近海波浪条件由位于~ 8米水深的一系列压力表确定。结果表明:海涌频带HSS显著浪高在内浪带呈间歇性深度限制,低能条件下,内浪带显著浪高与约8m深度(HSS,ISZ/HSS,8m)显著浪高之比在0.42 ~ 1.31之间,高能条件下,显著浪高之比在0.19 ~ 0.39之间;在11 d的时间内,运行参数的时间变化显著,南部激光雷达位置的R2%在1.07 ~ 3.07 m之间,北部激光雷达位置的R2%在1.45 ~ 3.36 m之间。沿岸R2%的差异范围为0.00 ~ 0.90 m,在北部激光雷达位置,R2%和显著浪涌高度Rsig通常都较大。在低能量近岸波条件下,当内浪带不饱和时,大多数内浪带和上升参数的沿岸变化最大,尽管这种趋势在R2%中最弱。静水位以上的平均上升高度Rmean与波浪驱动的内浪带水面超高程仅呈弱相关(Zmean, R2 = 0.23),表明波浪诱导的设置只是影响Rmean的一个因素。虽然显著的海浪冲刷高度RSS和沿岸差异与前滨滩坡度β前滨相关(R2 = 0.59和R2 = 0.70),但R2%、Rmean及其沿岸变化与β前滨无关。R2%和Rmean与内浪带Hsig、ISZ的显著波高相关(R2 = 0.61和R2 = 0.72),且受浪带内波浪耗散模式的强烈影响。这些结果表明,虽然β前滨影响了平均上下冲振荡的幅度,但它对中间海滩上的冲升所达到的总高程的作用较小。此外,研究结果还说明了表层测深的重要性,以及由此产生的表层内波高随时间和沿岸变化的极值和平均上升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信