{"title":"Acoustic signatures of bulbar ALS: Predictive modeling with sustained vowels and LightGBM","authors":"Zahra Farrokhi , Seyed Amirali Zakavi , Arian Sarafraz , Maryam Valifard , Salar Yousefzadeh , Zahra Mashhadi Tafreshi , Omid Anbiyaee , Navid Rostami , Mahsa Asadi Anar , Niloofar Deravi","doi":"10.1016/j.ensci.2025.100579","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Amyotrophic Lateral Sclerosis (ALS) is a degenerative neurologic disease with no definitive biomarkers for early detection. This paper discusses the use of acoustic analysis of sustained vowel phonations (SVP) and machine learning in ALS detection.</div></div><div><h3>Methods</h3><div>An SVP corpus of 128 (64 /a/ and 64 /i/) from 31 patients with ALS and 33 healthy controls (HC) was employed. 131 acoustic features, including jitter, shimmer, Mel-Frequency Cepstral Coefficients (MFCCs), and Pathological Vibrato Index (PVI), were extracted. A LightGBM (Light Gradient Boosting Machine)-based model was built and optimized using 5-fold cross-validation to separate ALS cases. Model performance and feature importance were evaluated.</div></div><div><h3>Results</h3><div>The model performed well with high predictability, yielding an RMSLE of 0.162 and most predictions closely correlating with actual diagnoses. The top features obtained were S55_i, CCI(2), and dCCa(12), which were consistently at the top of the ranking list, indicating their role in ALS detection. The PVI was determined to be a significant biomarker with high values having high correlations with ALS diagnoses. But the multimodal nature of the predictive values indicated some flaws in generalization.</div></div><div><h3>Conclusion</h3><div>This paper demonstrates the applicability of acoustic analysis and machine learning for early ALS detection. The proposed method provides an affordable, low-cost, and non-invasive way for ALS diagnosis with potential for application in telemedicine and clinical settings. Future research must expand datasets and integrate additional diagnostic modalities to improve the model's robustness and clinical translation.</div></div>","PeriodicalId":37974,"journal":{"name":"eNeurologicalSci","volume":"40 ","pages":"Article 100579"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeurologicalSci","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405650225000334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Amyotrophic Lateral Sclerosis (ALS) is a degenerative neurologic disease with no definitive biomarkers for early detection. This paper discusses the use of acoustic analysis of sustained vowel phonations (SVP) and machine learning in ALS detection.
Methods
An SVP corpus of 128 (64 /a/ and 64 /i/) from 31 patients with ALS and 33 healthy controls (HC) was employed. 131 acoustic features, including jitter, shimmer, Mel-Frequency Cepstral Coefficients (MFCCs), and Pathological Vibrato Index (PVI), were extracted. A LightGBM (Light Gradient Boosting Machine)-based model was built and optimized using 5-fold cross-validation to separate ALS cases. Model performance and feature importance were evaluated.
Results
The model performed well with high predictability, yielding an RMSLE of 0.162 and most predictions closely correlating with actual diagnoses. The top features obtained were S55_i, CCI(2), and dCCa(12), which were consistently at the top of the ranking list, indicating their role in ALS detection. The PVI was determined to be a significant biomarker with high values having high correlations with ALS diagnoses. But the multimodal nature of the predictive values indicated some flaws in generalization.
Conclusion
This paper demonstrates the applicability of acoustic analysis and machine learning for early ALS detection. The proposed method provides an affordable, low-cost, and non-invasive way for ALS diagnosis with potential for application in telemedicine and clinical settings. Future research must expand datasets and integrate additional diagnostic modalities to improve the model's robustness and clinical translation.
期刊介绍:
eNeurologicalSci provides a medium for the prompt publication of original articles in neurology and neuroscience from around the world. eNS places special emphasis on articles that: 1) provide guidance to clinicians around the world (Best Practices, Global Neurology); 2) report cutting-edge science related to neurology (Basic and Translational Sciences); 3) educate readers about relevant and practical clinical outcomes in neurology (Outcomes Research); and 4) summarize or editorialize the current state of the literature (Reviews, Commentaries, and Editorials). eNS accepts most types of manuscripts for consideration including original research papers, short communications, reviews, book reviews, letters to the Editor, opinions and editorials. Topics considered will be from neurology-related fields that are of interest to practicing physicians around the world. Examples include neuromuscular diseases, demyelination, atrophies, dementia, neoplasms, infections, epilepsies, disturbances of consciousness, stroke and cerebral circulation, growth and development, plasticity and intermediary metabolism. The fields covered may include neuroanatomy, neurochemistry, neuroendocrinology, neuroepidemiology, neurogenetics, neuroimmunology, neuroophthalmology, neuropathology, neuropharmacology, neurophysiology, neuropsychology, neuroradiology, neurosurgery, neurooncology, neurotoxicology, restorative neurology, and tropical neurology.