L∞-structure and scattering amplitudes of antisymmetric tensor gauge field theory

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Jialiang Dai, Wenting Pan, Juanjuan Cheng
{"title":"L∞-structure and scattering amplitudes of antisymmetric tensor gauge field theory","authors":"Jialiang Dai,&nbsp;Wenting Pan,&nbsp;Juanjuan Cheng","doi":"10.1016/j.nuclphysb.2025.117053","DOIUrl":null,"url":null,"abstract":"<div><div>We explore the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-algebraic structures in antisymmetric tensor gauge field theory, focusing on the construction of a contracting homotopy for the chain map between two distinct <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-algebras. Utilizing the free Feynman propagators, we establish a quasi-isomorphism between the original <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-algebra and its minimal model. This construction leads to the recursive relations for the coefficients of Berends-Giele-like currents which are essential in the computations of tree-level scattering amplitudes of tensor gauge fields. Under such framework, we derive the generating functional for all tree-level amplitudes in terms of Maurer-Cartan elements within the minimal model. As an illustration, we carry out the three- and four-point scattering amplitudes in the tensor gauge theory by applying field operators to the Maurer-Cartan action with appropriate boundary conditions.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1018 ","pages":"Article 117053"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325002627","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the L-algebraic structures in antisymmetric tensor gauge field theory, focusing on the construction of a contracting homotopy for the chain map between two distinct L-algebras. Utilizing the free Feynman propagators, we establish a quasi-isomorphism between the original L-algebra and its minimal model. This construction leads to the recursive relations for the coefficients of Berends-Giele-like currents which are essential in the computations of tree-level scattering amplitudes of tensor gauge fields. Under such framework, we derive the generating functional for all tree-level amplitudes in terms of Maurer-Cartan elements within the minimal model. As an illustration, we carry out the three- and four-point scattering amplitudes in the tensor gauge theory by applying field operators to the Maurer-Cartan action with appropriate boundary conditions.
反对称张量规范场理论的L∞结构和散射振幅
研究了反对称张量规范场理论中的L∞-代数结构,重点讨论了两个不同L∞-代数之间的链映射的收缩同伦的构造。利用自由费曼传播子,建立了原L∞代数与其最小模型之间的拟同构。这种构造导致了类贝伦兹-吉尔流系数的递推关系,这在计算张量规范场的树级散射幅值中是必不可少的。在此框架下,我们导出了最小模型中所有树级振幅的毛雷尔-卡坦单元的生成函数。作为一个例子,我们通过将场算符应用于具有适当边界条件的毛雷尔-卡坦作用来实现张量规范理论中的三点和四点散射振幅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信