Elahe Irandoost , Ahmad Ghorbanpour , Hadi Balouei Jamkhaneh , Peiman Ghasemi , Erfan Babaee Tirkolaee
{"title":"Sustainable-circular water resources management in the mining industry using system dynamics modeling","authors":"Elahe Irandoost , Ahmad Ghorbanpour , Hadi Balouei Jamkhaneh , Peiman Ghasemi , Erfan Babaee Tirkolaee","doi":"10.1016/j.wri.2025.100313","DOIUrl":null,"url":null,"abstract":"<div><div>Mining is seen as a water-consuming industry, whereas the number of mining industries increases, followed by the excessive consumption of groundwater. An efficient water management system, pursuing a global objective of sustainable development and circular solutions, is needed at the production process level. Hence, to separate economic development and growth from the excessive consumption of resources, the alternative Circular Economy (CE) model is recommended as a new paradigm of the economy for sustainable development. This study aims to design a dynamic model which allows the analysis of various scenarios in line with sustainable Water Consumption Management (WCM) in the mining industries, considering the components of CE. In this work, the water system of mining industries is modeled using the System Dynamics (SD) approach in a southern province of Iran, given the impact of components of the CE on water demand, industrial balance, and groundwater volume by 2041. Findings demonstrate that implementing three strategies of reduction, recovery and reuse in the mining industries of Bushehr Province through public policies encourages the use of water consumption reduction technology in the mining industry units, wherein greet growth in the number of active units, 90 % reduction in the stagnant units, 92 % reduction in water consumption per capita and 70 % reduction in the water demand of mining industries are observed. Therefore, compliance with CE principles in this industry can solve the main concerns of Water Resources Management (WRM), such as increasing water productivity, reducing water withdrawal from existing sources, and reducing per capita water consumption.</div></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"34 ","pages":"Article 100313"},"PeriodicalIF":7.5000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221237172500037X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mining is seen as a water-consuming industry, whereas the number of mining industries increases, followed by the excessive consumption of groundwater. An efficient water management system, pursuing a global objective of sustainable development and circular solutions, is needed at the production process level. Hence, to separate economic development and growth from the excessive consumption of resources, the alternative Circular Economy (CE) model is recommended as a new paradigm of the economy for sustainable development. This study aims to design a dynamic model which allows the analysis of various scenarios in line with sustainable Water Consumption Management (WCM) in the mining industries, considering the components of CE. In this work, the water system of mining industries is modeled using the System Dynamics (SD) approach in a southern province of Iran, given the impact of components of the CE on water demand, industrial balance, and groundwater volume by 2041. Findings demonstrate that implementing three strategies of reduction, recovery and reuse in the mining industries of Bushehr Province through public policies encourages the use of water consumption reduction technology in the mining industry units, wherein greet growth in the number of active units, 90 % reduction in the stagnant units, 92 % reduction in water consumption per capita and 70 % reduction in the water demand of mining industries are observed. Therefore, compliance with CE principles in this industry can solve the main concerns of Water Resources Management (WRM), such as increasing water productivity, reducing water withdrawal from existing sources, and reducing per capita water consumption.
期刊介绍:
Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry