{"title":"Scalable production process development for NK cells targeting large-scale expansion","authors":"Takuya Kikuchi, Ippei Takeuchi, Hideto Yamaguchi","doi":"10.1016/j.reth.2025.07.014","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Natural Killer (NK) cells have attracted extensive attention as therapeutic agents for hematological malignancies and solid tumors. NK cell therapies carry a lower risk of Graft-Versus-Host Disease (GVHD) in allogeneic transplantation, making them ideal candidates for “off-the-shelf” allogeneic cell therapies. However, the expansion culture of NK cells typically employs a scale-out strategy using a large number of culture vessels, making it still challenging to use NK cells as 'off-the-shelf' allogeneic cell therapies. While scalable, aerated stirred bioreactor could be an ideal approach, there have been no reports on culture evaluations specifically targeting iPCS-derived NK cells.</div></div><div><h3>Methods</h3><div>We developed a process for expanding iPCS-derived NK cells using a stirred culture system. The NK cell stimulation process with agonist antibodies and expansion process were repeated, and the cell expansion and quality of iPCS-derived NK cells were evaluated. Scale-up factors were evaluated using an aerated stirred bioreactor, and process scale-up was performed from 1 L to 10 L bioreactors.</div></div><div><h3>Results</h3><div>iPCS-derived NK cells showed higher cell expansion in stirred cultures than in static cultures. By repeated stimulation and expansion processes, iPCS-derived NK cells expanded 1000-fold with comparable cell expansion and quality. iPCS-derived NK cells could be scaled up from 1 L to 10 L aerated stirred bioreactors with comparable cell expansion and quality.</div></div><div><h3>Conclusions</h3><div>Through systematic process evaluation and optimization, we demonstrated that iPCS-derived NK cells can be expanded in a scalable aerated stirred bioreactor.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"30 ","pages":"Pages 535-543"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320425001683","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Natural Killer (NK) cells have attracted extensive attention as therapeutic agents for hematological malignancies and solid tumors. NK cell therapies carry a lower risk of Graft-Versus-Host Disease (GVHD) in allogeneic transplantation, making them ideal candidates for “off-the-shelf” allogeneic cell therapies. However, the expansion culture of NK cells typically employs a scale-out strategy using a large number of culture vessels, making it still challenging to use NK cells as 'off-the-shelf' allogeneic cell therapies. While scalable, aerated stirred bioreactor could be an ideal approach, there have been no reports on culture evaluations specifically targeting iPCS-derived NK cells.
Methods
We developed a process for expanding iPCS-derived NK cells using a stirred culture system. The NK cell stimulation process with agonist antibodies and expansion process were repeated, and the cell expansion and quality of iPCS-derived NK cells were evaluated. Scale-up factors were evaluated using an aerated stirred bioreactor, and process scale-up was performed from 1 L to 10 L bioreactors.
Results
iPCS-derived NK cells showed higher cell expansion in stirred cultures than in static cultures. By repeated stimulation and expansion processes, iPCS-derived NK cells expanded 1000-fold with comparable cell expansion and quality. iPCS-derived NK cells could be scaled up from 1 L to 10 L aerated stirred bioreactors with comparable cell expansion and quality.
Conclusions
Through systematic process evaluation and optimization, we demonstrated that iPCS-derived NK cells can be expanded in a scalable aerated stirred bioreactor.
期刊介绍:
Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine.
Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.