Fabricating ultra-robust hydrogels with adhesive properties by restraining crack propagation with bamboo cellulose-based carbon nanomaterials

IF 13 Q1 MATERIALS SCIENCE, PAPER & WOOD
Xin Duan , Huanxin Huo , Hongshan Li , Yihong Gao , Haoran Shi , Feng Kuang , Yumeng Chen , Jianyong Wan , Jingjie Shen , Guanben Du , Long Yang
{"title":"Fabricating ultra-robust hydrogels with adhesive properties by restraining crack propagation with bamboo cellulose-based carbon nanomaterials","authors":"Xin Duan ,&nbsp;Huanxin Huo ,&nbsp;Hongshan Li ,&nbsp;Yihong Gao ,&nbsp;Haoran Shi ,&nbsp;Feng Kuang ,&nbsp;Yumeng Chen ,&nbsp;Jianyong Wan ,&nbsp;Jingjie Shen ,&nbsp;Guanben Du ,&nbsp;Long Yang","doi":"10.1016/j.jobab.2025.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>The bamboo fiber functionalized with phthalic anhydride underwent carbonization, yielding bamboo cellulose-derived carbon nanomaterials (C-BCN). These C-BCN were subsequently integrated into an acrylamide precursor solution to synthesize an ultra-robust, fatigue-resistant conductive hydrogel (PAM-C-BCN). During in situ polymerization, the abundant active sites on the C-BCN surface facilitated covalent cross-linking with the polyacrylamide (PAM) matrix. This interfacial interaction promoted strong adhesion between the PAM chains and the carbon nanostructures, forming a densely interpenetrated network through macromolecular entanglement. The synergistic coupling of the rigid C-BCN framework with the flexible polymer chains conferred exceptional mechanical resilience and energy dissipation capabilities to the composite hydrogel. Compared to the PAM hydrogel, the PAM-C-BCN hydrogel exhibited an improvement in mechanical properties, with a fracture strength of 363 kPa (a 2.5% increase), an elongation of approximately 2 254% (a 2.0% increase), a fracture energy of 30 kJ/m<sup>2</sup> (a 3.1% increase), and a toughness of 3.04 MJ/m<sup>3</sup> (a 4.1% increase). Moreover, PAM-C-BCN hydrogel demonstrated high adhesion (up to 7.5 kPa on pigskin) and conductivity (0.21 S/m). This strategy required neither complex design nor processing, offering a simple and efficient approach with great potential for hydrogel applications requiring high mechanical performance. At the crack tip of PAM-C-BCN hydrogel, C-BCN exhibited superior crack propagation resistance compared to SiO<sub>2</sub> nanoparticles. Importantly, this strategy offered valuable insights for developing tough and stretchable hydrogels.</div></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"10 3","pages":"Pages 360-372"},"PeriodicalIF":13.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioresources and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2369969825000349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

The bamboo fiber functionalized with phthalic anhydride underwent carbonization, yielding bamboo cellulose-derived carbon nanomaterials (C-BCN). These C-BCN were subsequently integrated into an acrylamide precursor solution to synthesize an ultra-robust, fatigue-resistant conductive hydrogel (PAM-C-BCN). During in situ polymerization, the abundant active sites on the C-BCN surface facilitated covalent cross-linking with the polyacrylamide (PAM) matrix. This interfacial interaction promoted strong adhesion between the PAM chains and the carbon nanostructures, forming a densely interpenetrated network through macromolecular entanglement. The synergistic coupling of the rigid C-BCN framework with the flexible polymer chains conferred exceptional mechanical resilience and energy dissipation capabilities to the composite hydrogel. Compared to the PAM hydrogel, the PAM-C-BCN hydrogel exhibited an improvement in mechanical properties, with a fracture strength of 363 kPa (a 2.5% increase), an elongation of approximately 2 254% (a 2.0% increase), a fracture energy of 30 kJ/m2 (a 3.1% increase), and a toughness of 3.04 MJ/m3 (a 4.1% increase). Moreover, PAM-C-BCN hydrogel demonstrated high adhesion (up to 7.5 kPa on pigskin) and conductivity (0.21 S/m). This strategy required neither complex design nor processing, offering a simple and efficient approach with great potential for hydrogel applications requiring high mechanical performance. At the crack tip of PAM-C-BCN hydrogel, C-BCN exhibited superior crack propagation resistance compared to SiO2 nanoparticles. Importantly, this strategy offered valuable insights for developing tough and stretchable hydrogels.
利用竹纤维素基碳纳米材料抑制裂纹扩展制备具有粘接性能的超坚固水凝胶
将邻苯二酸酐功能化的竹纤维进行炭化处理,得到竹纤维素碳纳米材料(C-BCN)。这些C-BCN随后被整合到丙烯酰胺前体溶液中,合成了一种超坚固、抗疲劳的导电水凝胶(PAM-C-BCN)。在原位聚合过程中,C-BCN表面丰富的活性位点促进了与聚丙烯酰胺(PAM)基体的共价交联。这种界面相互作用促进了PAM链与碳纳米结构之间的强粘附,通过大分子纠缠形成密集的互穿网络。刚性C-BCN框架与柔性聚合物链的协同耦合赋予复合水凝胶卓越的机械弹性和能量耗散能力。与PAM水凝胶相比,PAM- c - bcn水凝胶的力学性能得到改善,断裂强度为363 kPa(提高2.5%),伸长率约为2 254%(提高2.0%),断裂能为30 kJ/m2(提高3.1%),韧性为3.04 MJ/m3(提高4.1%)。此外,PAM-C-BCN水凝胶在猪皮上具有高粘附性(高达7.5 kPa)和导电性(0.21 S/m)。该策略既不需要复杂的设计也不需要加工,为需要高机械性能的水凝胶应用提供了简单有效的方法。在PAM-C-BCN水凝胶的裂纹尖端,C-BCN表现出优于SiO2纳米颗粒的抗裂纹扩展能力。重要的是,该策略为开发坚韧和可拉伸的水凝胶提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bioresources and Bioproducts
Journal of Bioresources and Bioproducts Agricultural and Biological Sciences-Forestry
CiteScore
39.30
自引率
0.00%
发文量
38
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信