Temperature-Tuned Cobalt-doped MoS2/WS2 heterojunction thin films for enhanced bifunctional electrocatalytic performance in water splitting

IF 7.9 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Balasubramanian Akila , Dhanapal Vasu , Homg-Ming Su , Subramanian Sakthinathan , Sakthivel Kogularasu , Yen-Yi Lee , Guo-Ping Chang-Chien , Te-Wei Chiu
{"title":"Temperature-Tuned Cobalt-doped MoS2/WS2 heterojunction thin films for enhanced bifunctional electrocatalytic performance in water splitting","authors":"Balasubramanian Akila ,&nbsp;Dhanapal Vasu ,&nbsp;Homg-Ming Su ,&nbsp;Subramanian Sakthinathan ,&nbsp;Sakthivel Kogularasu ,&nbsp;Yen-Yi Lee ,&nbsp;Guo-Ping Chang-Chien ,&nbsp;Te-Wei Chiu","doi":"10.1016/j.mtsust.2025.101189","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal dichalcogenides (TMDs), particularly WS<sub>2</sub> and MoS<sub>2</sub>, have garnered significant attention as advanced energy materials due to their unique structural and electronic properties. This study reports the synthesis of cobalt-doped MoS<sub>2</sub>/WS<sub>2</sub> (Co-MoS<sub>2</sub>/WS<sub>2</sub>) thin films using a two-step spin-coating technique, enabling the formation of a well-defined vertical interface between WS<sub>2</sub> and MoS<sub>2</sub> layers. Post-synthesis annealing at temperatures ranging from 700 to 900 °C under an argon-nitrogen atmosphere enhanced the bifunctional electrocatalytic activity for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Cobalt doping improved the material's conductivity, optimized the hydrogen adsorption-free energy at the MoS<sub>2</sub>/WS<sub>2</sub> interface, and introduced additional catalytic active sites for OER. The Co-MoS<sub>2</sub>/WS<sub>2</sub> thin films exhibited competitive overpotentials comparable to state-of-the-art bifunctional catalysts, with the novelty residing in the simplicity and scalability of the spin-coating method and the synergistic effect of Co doping with the MoS<sub>2</sub>/WS<sub>2</sub> heterostructure. This approach provides a cost-effective and scalable strategy for the development of bifunctional electrocatalysts for total water splitting.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"31 ","pages":"Article 101189"},"PeriodicalIF":7.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234725001186","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal dichalcogenides (TMDs), particularly WS2 and MoS2, have garnered significant attention as advanced energy materials due to their unique structural and electronic properties. This study reports the synthesis of cobalt-doped MoS2/WS2 (Co-MoS2/WS2) thin films using a two-step spin-coating technique, enabling the formation of a well-defined vertical interface between WS2 and MoS2 layers. Post-synthesis annealing at temperatures ranging from 700 to 900 °C under an argon-nitrogen atmosphere enhanced the bifunctional electrocatalytic activity for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Cobalt doping improved the material's conductivity, optimized the hydrogen adsorption-free energy at the MoS2/WS2 interface, and introduced additional catalytic active sites for OER. The Co-MoS2/WS2 thin films exhibited competitive overpotentials comparable to state-of-the-art bifunctional catalysts, with the novelty residing in the simplicity and scalability of the spin-coating method and the synergistic effect of Co doping with the MoS2/WS2 heterostructure. This approach provides a cost-effective and scalable strategy for the development of bifunctional electrocatalysts for total water splitting.

Abstract Image

温度调谐钴掺杂MoS2/WS2异质结薄膜在水分解中增强双功能电催化性能
过渡金属二硫化物(TMDs),特别是WS2和MoS2,由于其独特的结构和电子性能,作为先进的能源材料受到了广泛的关注。本研究报道了采用两步自旋镀膜技术合成钴掺杂MoS2/WS2 (Co-MoS2/WS2)薄膜,使WS2和MoS2层之间形成明确的垂直界面。合成后在700 ~ 900℃氩氮气氛下退火,增强了析氢反应(HER)和析氧反应(OER)的双功能电催化活性。钴的掺杂提高了材料的导电性,优化了MoS2/WS2界面处的无氢吸附能量,并为OER引入了额外的催化活性位点。Co-MoS2/WS2薄膜表现出与最先进的双功能催化剂相当的竞争性过电位,其新颖性在于自旋涂覆方法的简单性和可扩展性,以及Co掺杂与MoS2/WS2异质结构的协同效应。这种方法为开发用于总水分解的双功能电催化剂提供了一种具有成本效益和可扩展的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信