Hydrogenation and etching of single-layer graphene during exposure to atomic hydrogen

IF 3.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tom Fournier , Samir El Masaoudi , Iann C. Gerber , Benjamin Lassagne , Cedric Crespos , Jean-Marc Leyssale , Kelvin Cruz , Germercy Paredes , Felana Andriambelaza , Marc Monthioux , Pascal Puech , Fabrice Piazza
{"title":"Hydrogenation and etching of single-layer graphene during exposure to atomic hydrogen","authors":"Tom Fournier ,&nbsp;Samir El Masaoudi ,&nbsp;Iann C. Gerber ,&nbsp;Benjamin Lassagne ,&nbsp;Cedric Crespos ,&nbsp;Jean-Marc Leyssale ,&nbsp;Kelvin Cruz ,&nbsp;Germercy Paredes ,&nbsp;Felana Andriambelaza ,&nbsp;Marc Monthioux ,&nbsp;Pascal Puech ,&nbsp;Fabrice Piazza","doi":"10.1016/j.cartre.2025.100553","DOIUrl":null,"url":null,"abstract":"<div><div>Opening a band gap in graphene is essential for its integration into electronic devices, but remains a major challenge. Hydrogenation offers a promising route, though the process is complicated by competing mechanisms such as hydrogen desorption and unwanted etching. Here, we investigate one-sided hydrogenation of monolayer graphene on SiO₂/Si substrates at temperatures below ∼100 °C, using a hot-filament-assisted method compatible with semiconductor processing. Our results reveal a regime where hydrogen chemisorption and hole formation (etching) coexist. Dehydrogenation experiments and first-principles calculations indicate that hydrogen atoms preferentially cluster on neighboring carbon sites, potentially leading to dome-like lattice distortions. While hydrogen incorporation is favored at these sites, our simulations suggest that the resulting stresses alone are insufficient to cause carbon–carbon bond breakage. Instead, etching likely requires the presence of energetic atomic hydrogen. These findings help clarify the interplay between hydrogenation and etching and provide guidance for controlled graphene functionalization in device applications.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"20 ","pages":"Article 100553"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925001038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Opening a band gap in graphene is essential for its integration into electronic devices, but remains a major challenge. Hydrogenation offers a promising route, though the process is complicated by competing mechanisms such as hydrogen desorption and unwanted etching. Here, we investigate one-sided hydrogenation of monolayer graphene on SiO₂/Si substrates at temperatures below ∼100 °C, using a hot-filament-assisted method compatible with semiconductor processing. Our results reveal a regime where hydrogen chemisorption and hole formation (etching) coexist. Dehydrogenation experiments and first-principles calculations indicate that hydrogen atoms preferentially cluster on neighboring carbon sites, potentially leading to dome-like lattice distortions. While hydrogen incorporation is favored at these sites, our simulations suggest that the resulting stresses alone are insufficient to cause carbon–carbon bond breakage. Instead, etching likely requires the presence of energetic atomic hydrogen. These findings help clarify the interplay between hydrogenation and etching and provide guidance for controlled graphene functionalization in device applications.
暴露于氢原子时单层石墨烯的氢化和蚀刻
打开石墨烯的带隙对其集成到电子设备中至关重要,但仍然是一个主要挑战。氢化提供了一条很有前途的途径,尽管这一过程由于氢的解吸和不必要的蚀刻等相互竞争的机制而变得复杂。在这里,我们研究了在温度低于~ 100°C的sio2 /Si衬底上单层石墨烯的单侧氢化,使用与半导体加工兼容的热丝辅助方法。我们的结果揭示了氢化学吸附和空穴形成(蚀刻)共存的机制。脱氢实验和第一性原理计算表明,氢原子优先聚集在邻近的碳位上,可能导致圆顶状的晶格扭曲。虽然氢在这些位置的结合是有利的,但我们的模拟表明,仅产生的应力不足以导致碳-碳键断裂。相反,蚀刻可能需要高能氢原子的存在。这些发现有助于澄清氢化和蚀刻之间的相互作用,并为在器件应用中控制石墨烯功能化提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信