{"title":"Multiscale computing in complex gas-solid reactive systems—— A macroscale study on complexity","authors":"Chengzhe Du","doi":"10.1016/j.ceja.2025.100808","DOIUrl":null,"url":null,"abstract":"<div><div>Complex systems and complexity science have gained attention in recent years. In the field of chemical engineering, fluidized bed systems serve as typical examples characterized by nonlinearity, non-equilibrium, dissipative structures, etc. However, our current understanding of the complexity therein remains limited. This study aims to apply concepts from complexity science to the multi-scale computational processes, where complex gas-solid reactive flow systems are targeted. By examining two specific application scenarios in the Energy Minimization Multi-Scale (EMMS) model, concepts such as phase transitions and fractal/self-similarity are demonstrated within the realm of complexity science. After illustrating effects of different handling strategies, general procedures for addressing complex scenarios in macroscopic simulations are derived. This study represents an initial step towards uncovering the underlying connections among fluidization systems, multiscale simulations, and complexity science, thus providing opportunities for further exploration of complexity across different scales.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"23 ","pages":"Article 100808"},"PeriodicalIF":7.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266682112500105X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Complex systems and complexity science have gained attention in recent years. In the field of chemical engineering, fluidized bed systems serve as typical examples characterized by nonlinearity, non-equilibrium, dissipative structures, etc. However, our current understanding of the complexity therein remains limited. This study aims to apply concepts from complexity science to the multi-scale computational processes, where complex gas-solid reactive flow systems are targeted. By examining two specific application scenarios in the Energy Minimization Multi-Scale (EMMS) model, concepts such as phase transitions and fractal/self-similarity are demonstrated within the realm of complexity science. After illustrating effects of different handling strategies, general procedures for addressing complex scenarios in macroscopic simulations are derived. This study represents an initial step towards uncovering the underlying connections among fluidization systems, multiscale simulations, and complexity science, thus providing opportunities for further exploration of complexity across different scales.