Factors influencing mobile platform adoption for nutritional tracking among Thai elderly: A unified UTAUT and STAM approach

Q1 Economics, Econometrics and Finance
Shutchapol Chopvitayakun , Montean Rattanasiriwongwut , Mahasak Ketcham
{"title":"Factors influencing mobile platform adoption for nutritional tracking among Thai elderly: A unified UTAUT and STAM approach","authors":"Shutchapol Chopvitayakun ,&nbsp;Montean Rattanasiriwongwut ,&nbsp;Mahasak Ketcham","doi":"10.1016/j.joitmc.2025.100606","DOIUrl":null,"url":null,"abstract":"<div><div>The global aging population underscores the need for culturally tailored mobile health (mHealth) solutions to address nutritional challenges among older adults. This study investigates factors influencing the adoption of a culturally adapted mHealth platform for nutritional tracking among Thai elderly (aged ≥60), integrating the Unified Theory of Acceptance and Use of Technology (UTAUT) with the Senior Technology Acceptance Model (STAM). Using Partial Least Squares Structural Equation Modeling (PLS-SEM) with data from 355 Thai elderly, the model explained 65.3 % of the variance in Behavioral Intention (BI). Performance Expectancy (β = 0.237, p &lt; 0.001), Effort Expectancy (β = 0.239, p &lt; 0.001), Social Influence (β = 0.257, p &lt; 0.001), and Facilitating Conditions (β = 0.318, p &lt; 0.001) significantly predicted BI, while Gerontechnology Self-Efficacy was non-significant (β = 0.067, p = 0.074). Notably, Gerontechnology Anxiety (GA) positively influenced BI (β = 0.078, p = 0.044), suggesting a complex emotional effect in Thailand’s collectivist culture. However, Social Influence did not moderate the GA–BI link (β = 0.002, p = 0.96), suggesting limitations in its moderating role. Post hoc analysis showed Effort Expectancy mediated the effects of Gerontechnology Self-Efficacy (β = 0.155, p = 0.007) and GA (β = −0.048, p = 0.043) on BI. These findings highlight the interplay of functional, social, and emotional factors, informing the design of anxiety-aware, localized mHealth tools. This study contributes to gerontechnology by validating the UTAUT–STAM framework in a middle-income, collectivist context.</div></div>","PeriodicalId":16678,"journal":{"name":"Journal of Open Innovation: Technology, Market, and Complexity","volume":"11 3","pages":"Article 100606"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Innovation: Technology, Market, and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2199853125001416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

Abstract

The global aging population underscores the need for culturally tailored mobile health (mHealth) solutions to address nutritional challenges among older adults. This study investigates factors influencing the adoption of a culturally adapted mHealth platform for nutritional tracking among Thai elderly (aged ≥60), integrating the Unified Theory of Acceptance and Use of Technology (UTAUT) with the Senior Technology Acceptance Model (STAM). Using Partial Least Squares Structural Equation Modeling (PLS-SEM) with data from 355 Thai elderly, the model explained 65.3 % of the variance in Behavioral Intention (BI). Performance Expectancy (β = 0.237, p < 0.001), Effort Expectancy (β = 0.239, p < 0.001), Social Influence (β = 0.257, p < 0.001), and Facilitating Conditions (β = 0.318, p < 0.001) significantly predicted BI, while Gerontechnology Self-Efficacy was non-significant (β = 0.067, p = 0.074). Notably, Gerontechnology Anxiety (GA) positively influenced BI (β = 0.078, p = 0.044), suggesting a complex emotional effect in Thailand’s collectivist culture. However, Social Influence did not moderate the GA–BI link (β = 0.002, p = 0.96), suggesting limitations in its moderating role. Post hoc analysis showed Effort Expectancy mediated the effects of Gerontechnology Self-Efficacy (β = 0.155, p = 0.007) and GA (β = −0.048, p = 0.043) on BI. These findings highlight the interplay of functional, social, and emotional factors, informing the design of anxiety-aware, localized mHealth tools. This study contributes to gerontechnology by validating the UTAUT–STAM framework in a middle-income, collectivist context.
影响泰国老年人采用移动平台进行营养跟踪的因素:统一的UTAUT和STAM方法
全球人口老龄化凸显出有必要针对不同文化定制移动医疗(mHealth)解决方案,以应对老年人的营养挑战。本研究将技术接受和使用统一理论(UTAUT)与高级技术接受模型(STAM)相结合,调查了影响泰国老年人(≥60岁)采用文化适应性移动健康平台进行营养跟踪的因素。利用来自355名泰国老年人的偏最小二乘结构方程模型(PLS-SEM),该模型解释了65.3% %的行为意向(BI)方差。性能寿命(β= 0.237,p & lt; 0.001),工作寿命(β= 0.239,p & lt; 0.001),社会影响(β= 0.257,p & lt; 0.001),和促进条件(β= 0.318,p & lt; 0.001)显著预测BI,当Gerontechnology自我效能与(β= 0.067,p = 0.074)。值得注意的是,老年科技焦虑(GA)正向影响BI (β = 0.078, p = 0.044),表明泰国集体主义文化中存在复杂的情绪影响。然而,社会影响并没有调节GA-BI联系(β = 0.002, p = 0.96),表明其调节作用的局限性。事后分析显示,努力预期介导了老年科技自我效能(β = 0.155, p = 0.007)和GA (β = - 0.048, p = 0.043)对BI的影响。这些发现强调了功能、社会和情感因素的相互作用,为设计焦虑感知、本地化的移动健康工具提供了信息。本研究通过在中等收入、集体主义背景下验证UTAUT-STAM框架,为老年技术做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Open Innovation: Technology, Market, and Complexity
Journal of Open Innovation: Technology, Market, and Complexity Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
11.00
自引率
0.00%
发文量
196
审稿时长
1 day
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信