Electromagnetic modulation of memristor-based neuronal dynamics

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yun-sha Hu , Ming-xin Xu , Jing-lin Xu , Hong-biao Li , Guo-ping Sun
{"title":"Electromagnetic modulation of memristor-based neuronal dynamics","authors":"Yun-sha Hu ,&nbsp;Ming-xin Xu ,&nbsp;Jing-lin Xu ,&nbsp;Hong-biao Li ,&nbsp;Guo-ping Sun","doi":"10.1016/j.cjph.2025.06.044","DOIUrl":null,"url":null,"abstract":"<div><div>The cell fluid around neurons contains ions such as <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, <span><math><mrow><mi>N</mi><msup><mrow><mi>a</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mi>C</mi><msup><mrow><mi>l</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></math></span>, where ion adsorption on the neuronal membrane creates capacitive characteristics, while stochastic transport through irregular channel proteins across the membrane manifests inductive properties. This study constructs an electromagnetic-sensitive neuron model addressing electromagnetic field fluctuations during cytosol flow, incorporating flux-controlled and charge-controlled memristors to respectively participate in membrane potential voltage division and channel current shunting, with additional periodic stimulation for electrophysiological regulation. Helmholtz theorem verification is implemented for isolated neurons. Accounting for external electromagnetic field disturbances, Gaussian white noise perturbations are introduced to simulate the induced voltage components in charge-controlled memristors and induced current components in flux-controlled memristors. Membrane parameter <span><math><mi>c</mi></math></span> undergoes adaptive control considering neuronal deformation. Simulations show that periodic stimulation and memristor parameter adjustments yield chaotic, periodic, bursting, and spiking discharge modes, each with distinct energy storage traits. No significant stochastic resonance emerges under noise intervention, while parameter <span><math><mi>c</mi></math></span> achieves energy self-adaptive regulation through stabilization control.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"97 ","pages":"Pages 734-743"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S057790732500262X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The cell fluid around neurons contains ions such as K+, Na+ and Cl, where ion adsorption on the neuronal membrane creates capacitive characteristics, while stochastic transport through irregular channel proteins across the membrane manifests inductive properties. This study constructs an electromagnetic-sensitive neuron model addressing electromagnetic field fluctuations during cytosol flow, incorporating flux-controlled and charge-controlled memristors to respectively participate in membrane potential voltage division and channel current shunting, with additional periodic stimulation for electrophysiological regulation. Helmholtz theorem verification is implemented for isolated neurons. Accounting for external electromagnetic field disturbances, Gaussian white noise perturbations are introduced to simulate the induced voltage components in charge-controlled memristors and induced current components in flux-controlled memristors. Membrane parameter c undergoes adaptive control considering neuronal deformation. Simulations show that periodic stimulation and memristor parameter adjustments yield chaotic, periodic, bursting, and spiking discharge modes, each with distinct energy storage traits. No significant stochastic resonance emerges under noise intervention, while parameter c achieves energy self-adaptive regulation through stabilization control.

Abstract Image

基于记忆电阻器的神经元动力学电磁调制
神经元周围的细胞液含有K+、Na+和Cl -等离子,其中离子在神经元膜上的吸附产生电容特性,而通过不规则通道蛋白在膜上的随机运输则表现出诱导特性。本研究构建了一个处理胞浆流动过程中电磁场波动的电磁敏感神经元模型,采用磁控忆阻器和电荷控忆阻器分别参与膜电位分压和通道电流分流,外加周期性刺激进行电生理调节。实现了孤立神经元的亥姆霍兹定理验证。考虑外部电磁场的干扰,引入高斯白噪声扰动来模拟电荷控忆阻器中的感应电压分量和磁通控忆阻器中的感应电流分量。考虑神经元变形,对膜参数c进行自适应控制。仿真结果表明,周期刺激和忆阻器参数调整可产生混沌、周期、突发和尖峰放电模式,每种模式都具有不同的储能特性。噪声干扰下不产生明显的随机共振,参数c通过稳定化控制实现能量自适应调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信