{"title":"One Nanometer Matters: Quantum-Induced Discontinuity in the Oxygen Reduction Reaction Catalyzed by Platinum Nanoparticles","authors":"Zhuoya Deng, Yuanyuan Liu, Pengfei Wang, Zhunda Zhu, Nutthira Pakkang, Garbis Atam Akceoglu, Sangwoo Chae, Yasuyuki Sawada, Li Yang, Nagahiro Saito","doi":"10.1039/d5ta04934b","DOIUrl":null,"url":null,"abstract":"Quantum-induced discontinuity in the oxygen reduction reaction (ORR) catalyzed by Pt nanoparticles (NPs) occurs at the ~1.0 nm scale. Using a controlled solution plasma method, we synthesized monodisperse, surfactant-free ~1.0-nm Pt NPs uniformly supported on single-walled carbon nanotubes. Electrochemical evaluation revealed a pronounced deviation from the classical size-scaling behavior: the catalytic activity decreased with decreasing Pt NP diameter from 2.5 to 1.5 nm but unexpectedly increased at ~1.0 nm. High-resolution structural and spectroscopic analyses confirmed a critical transition around 1.5 nm, which separates the classical metallic behavior from a regime governed by quantum confinement. Despite their partial structural disorder, these quantum-sized clusters exhibited superior ORR performance, attributed to discrete electronic states, altered d-band structures and a high density of low-coordination active sites. The catalysts also demonstrated high durability, retaining ~90% of its reduction current after 2,000 cycles with <5% particle growth in acidic media. In particular, the superior ORR performance at ~1.0 nm is consistent with the formation of magic number clusters exhibiting high symmetry, closed shell stability, and facet-specific reactivity. These structures deviate from conventional crystal habits, favoring icosahedral or truncated geometries rich in undercoordinated edge and corner atoms. The resulting disruption of long-range order and emergence of localized quantum states redefines the catalytic paradigm at this scale. This abrupt improvement in ORR performance establishes a fundamental boundary between classical and quantum electrocatalysis. By reframing ultrasmall Pt NPs as quantum objects rather than miniature metals, this study introduces a new design principle: harnessing quantum effects and symmetry-driven structural motifs for the rational design of next-generation catalysts in sustainable energy technologies.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"7 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta04934b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum-induced discontinuity in the oxygen reduction reaction (ORR) catalyzed by Pt nanoparticles (NPs) occurs at the ~1.0 nm scale. Using a controlled solution plasma method, we synthesized monodisperse, surfactant-free ~1.0-nm Pt NPs uniformly supported on single-walled carbon nanotubes. Electrochemical evaluation revealed a pronounced deviation from the classical size-scaling behavior: the catalytic activity decreased with decreasing Pt NP diameter from 2.5 to 1.5 nm but unexpectedly increased at ~1.0 nm. High-resolution structural and spectroscopic analyses confirmed a critical transition around 1.5 nm, which separates the classical metallic behavior from a regime governed by quantum confinement. Despite their partial structural disorder, these quantum-sized clusters exhibited superior ORR performance, attributed to discrete electronic states, altered d-band structures and a high density of low-coordination active sites. The catalysts also demonstrated high durability, retaining ~90% of its reduction current after 2,000 cycles with <5% particle growth in acidic media. In particular, the superior ORR performance at ~1.0 nm is consistent with the formation of magic number clusters exhibiting high symmetry, closed shell stability, and facet-specific reactivity. These structures deviate from conventional crystal habits, favoring icosahedral or truncated geometries rich in undercoordinated edge and corner atoms. The resulting disruption of long-range order and emergence of localized quantum states redefines the catalytic paradigm at this scale. This abrupt improvement in ORR performance establishes a fundamental boundary between classical and quantum electrocatalysis. By reframing ultrasmall Pt NPs as quantum objects rather than miniature metals, this study introduces a new design principle: harnessing quantum effects and symmetry-driven structural motifs for the rational design of next-generation catalysts in sustainable energy technologies.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.