Revealing complex magnetic interactions in Fe2P-based compounds: a study using Mössbauer spectroscopy and neutron diffraction

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Karthika K. Thilakan, Sagar Ghorai, Wei Liu, Lennart Häggström, Fredrik Lindgren, Vladimir Pomjakushin, Premysl Beran, Oliver Gutfleisch, Peter Svedlindh and Johan Cedervall
{"title":"Revealing complex magnetic interactions in Fe2P-based compounds: a study using Mössbauer spectroscopy and neutron diffraction","authors":"Karthika K. Thilakan, Sagar Ghorai, Wei Liu, Lennart Häggström, Fredrik Lindgren, Vladimir Pomjakushin, Premysl Beran, Oliver Gutfleisch, Peter Svedlindh and Johan Cedervall","doi":"10.1039/D5TA03047A","DOIUrl":null,"url":null,"abstract":"<p >The magnetic properties of Fe<small><sub>2−2<em>x</em></sub></small>Mn<small><sub>2<em>x</em></sub></small>P<small><sub>1−<em>x</em></sub></small>Si<small><sub><em>x</em></sub></small> (0 ≤ <em>x</em> ≤ 0.5) compounds are studied by neutron diffraction, Mössbauer spectroscopy, and magnetometry. DC magnetization measurements indicate that compounds with 0.2 ≤ <em>x</em> ≤ 0.5 undergo a paramagnetic to ferromagnetic transition, with the Curie temperature increasing as <em>x</em> increases. In contrast, compounds with 0 &lt; <em>x</em> ≤ 0.15 show unclear magnetic ordering in DC magnetization measurements, while AC magnetization measurements display frequency-dependent peaks, indicating glassy spin dynamics. For the <em>x</em> = 0.125 sample, AC magnetization measurements under applied DC fields suggest that the transition at 150 K corresponds to a complex antiferromagnetic (AFM) structure. Mössbauer spectroscopy reveals four distinct regions of hyperfine interactions for different <em>x</em> values, suggesting extreme sensitivity in the magnetic behaviour with Mn and Si substitutions. For 0 &lt; <em>x</em> &lt; 0.15, a drop in the magnetic hyperfine field supports the existence of a complex AFM structure. Neutron diffraction on the <em>x</em> = 0.1 sample confirms an incommensurate AFM structure with a propagation vector <em>q</em><small><sub><em>x</em></sub></small> = 0.2204(4), consistent with the Mössbauer and magnetization results.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 36","pages":" 30128-30139"},"PeriodicalIF":9.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta03047a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta03047a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The magnetic properties of Fe2−2xMn2xP1−xSix (0 ≤ x ≤ 0.5) compounds are studied by neutron diffraction, Mössbauer spectroscopy, and magnetometry. DC magnetization measurements indicate that compounds with 0.2 ≤ x ≤ 0.5 undergo a paramagnetic to ferromagnetic transition, with the Curie temperature increasing as x increases. In contrast, compounds with 0 < x ≤ 0.15 show unclear magnetic ordering in DC magnetization measurements, while AC magnetization measurements display frequency-dependent peaks, indicating glassy spin dynamics. For the x = 0.125 sample, AC magnetization measurements under applied DC fields suggest that the transition at 150 K corresponds to a complex antiferromagnetic (AFM) structure. Mössbauer spectroscopy reveals four distinct regions of hyperfine interactions for different x values, suggesting extreme sensitivity in the magnetic behaviour with Mn and Si substitutions. For 0 < x < 0.15, a drop in the magnetic hyperfine field supports the existence of a complex AFM structure. Neutron diffraction on the x = 0.1 sample confirms an incommensurate AFM structure with a propagation vector qx = 0.2204(4), consistent with the Mössbauer and magnetization results.

Abstract Image

揭示fe2p基化合物中复杂的磁相互作用:利用Mössbauer光谱和中子衍射的研究
利用中子衍射、Mössbauer光谱和磁强计研究了Fe2-2xMn2xP1-xSix(0≤x≤0.5)化合物的磁性能。直流磁化测量表明,当浓度为0.2≤x≤0.5时,化合物发生顺磁性向铁磁性转变,居里温度随x的增加而升高。相比之下,含有0 <;x≤0.15在直流磁化曲线中显示出不清晰的磁有序,而交流磁化测量显示出频率相关的峰值,表明玻璃自旋动力学。对于x = 0.125的样品,施加直流磁场下的交流磁化测量表明,150 K时的跃迁对应于复杂的反铁磁(AFM)结构。Mössbauer光谱揭示了不同x值下超精细相互作用的四个不同区域,表明Mn和Si取代对磁性行为的极端敏感性。对于0 <;x & lt;0.15时,超细磁场的下降支持复杂AFM结构的存在。在x = 0.1样品上的中子衍射证实了一个不相称的AFM结构,其传播矢量qx = 0.2204(4),与Mössbauer和磁化结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信