Biodegradable and electroactive cryogel microspheres for neurovascularized bone regeneration

IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-09-03 DOI:10.1016/j.matt.2025.102366
Yushu Wang , Yue Wang , Xinyu Wang , Xinxin Li , Yingjie Yu , David L. Kaplan , Qing Cai
{"title":"Biodegradable and electroactive cryogel microspheres for neurovascularized bone regeneration","authors":"Yushu Wang ,&nbsp;Yue Wang ,&nbsp;Xinyu Wang ,&nbsp;Xinxin Li ,&nbsp;Yingjie Yu ,&nbsp;David L. Kaplan ,&nbsp;Qing Cai","doi":"10.1016/j.matt.2025.102366","DOIUrl":null,"url":null,"abstract":"<div><div>Bone regeneration is a complex and dynamic biological process involving vascularization, neurogenesis, and osteogenesis. Inspired by the piezoelectric properties of natural bone, this study develops an innovative dual-electroactive cryogel microsphere system that uniquely integrates conductive polymers, bioactive ion release, and piezoelectric materials to support neurovascularized bone regeneration. These injectable and biodegradable microspheres, composed of whitlockite, poly(3,4-ethylenedioxythiophene), and gelatin methacrylate, are designed to enhance electrical output and sustain bioactive ion release. <em>In vitro</em> analyses demonstrate that these dual-electroactive microspheres synergistically promote angiogenesis, lymphogenesis, neurogenesis, and osteogenesis by combining bioelectric and biochemical cues. Transcriptomic analysis highlights the activation of key signaling pathways, including MAPK-ERK1/2, PI3K-AKT, and HIF-1, underlying these regenerative processes. <em>In vivo</em> evaluations using a rat calvarial defect model confirm accelerated bone repair, with the microspheres recreating bioelectric microenvironments and facilitating bioactive ion delivery. This study presents a minimally invasive strategy for advancing bone tissue engineering and enhancing bone regeneration.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 9","pages":"Article 102366"},"PeriodicalIF":17.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238525004096","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bone regeneration is a complex and dynamic biological process involving vascularization, neurogenesis, and osteogenesis. Inspired by the piezoelectric properties of natural bone, this study develops an innovative dual-electroactive cryogel microsphere system that uniquely integrates conductive polymers, bioactive ion release, and piezoelectric materials to support neurovascularized bone regeneration. These injectable and biodegradable microspheres, composed of whitlockite, poly(3,4-ethylenedioxythiophene), and gelatin methacrylate, are designed to enhance electrical output and sustain bioactive ion release. In vitro analyses demonstrate that these dual-electroactive microspheres synergistically promote angiogenesis, lymphogenesis, neurogenesis, and osteogenesis by combining bioelectric and biochemical cues. Transcriptomic analysis highlights the activation of key signaling pathways, including MAPK-ERK1/2, PI3K-AKT, and HIF-1, underlying these regenerative processes. In vivo evaluations using a rat calvarial defect model confirm accelerated bone repair, with the microspheres recreating bioelectric microenvironments and facilitating bioactive ion delivery. This study presents a minimally invasive strategy for advancing bone tissue engineering and enhancing bone regeneration.

Abstract Image

Abstract Image

用于神经血管骨再生的可生物降解电活性低温凝胶微球
骨再生是一个复杂和动态的生物过程,涉及血管形成、神经发生和成骨。受天然骨的压电特性的启发,本研究开发了一种创新的双电活性低温凝胶微球系统,该系统独特地集成了导电聚合物、生物活性离子释放和压电材料,以支持神经血管化骨再生。这些可注射和可生物降解的微球,由白脱石、聚(3,4-乙烯二氧噻吩)和甲基丙烯酸明胶组成,旨在提高电输出和维持生物活性离子释放。体外分析表明,这些双电活性微球通过结合生物电和生化信号,协同促进血管生成、淋巴生成、神经发生和骨生成。转录组学分析强调了关键信号通路的激活,包括MAPK-ERK1/2、PI3K-AKT和HIF-1,这些信号通路是这些再生过程的基础。使用大鼠颅骨缺损模型进行的体内评估证实了骨修复的加速,微球重建了生物电微环境并促进了生物活性离子的传递。本研究提出了一种微创策略来推进骨组织工程和增强骨再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信