{"title":"Numerical and experimental heat transfer analysis of two-phase flow through microchannel for development of heat dissipation correlation","authors":"Santosh Kumar Rai, Vikas Goyat, Mahesh Kumar Gupta, Gyander Ghangas, Dhowmya Bhatt, Arun Uniyal, Pardeep Kumar, Nikhil Vivek Shrivas","doi":"10.1515/jnet-2025-0044","DOIUrl":null,"url":null,"abstract":"The current trend of reducing the size of electronic devices in the industry has extensively increased the demand for effective heat dissipation, thereby intensifying the need for high-performance heat-dissipating devices. A promising approach to solve this challenge is the use of single-phase (SP), two-phase (TP), and supercritical fluids in micro-channels (MCs). Two-phase cooling is applicable only to those devices in which the tip temperature is high enough to allow the cooling fluid to convert into a two-phase state. In all other cases, only single-phase cooling can be utilized. In this work, numerical and experimental investigations on MC have been performed using water as the working fluid to predict TP behavior and heat dissipation from electronic devices using SP and TP flow. A numerical model of flow boiling heat transfer was developed based on conservation equations, which is solved to identify the existence of single and two-phase regions in the MC and to study the variation of pressure along its length at different heating powers. Further, experiments were performed in both SP and TP conditions to observe the nature of flow regimes and the impact of various parameters on effective heat dissipation through MCs well as temperature distribution. Numerical results were validated with experimental results, which showed good agreement. Several experiments were also carried out to develop an empirical correlation between mass flow rate and heat power to maintain the electronic device temperature below 40 °C. The developed correlation is experimentally validated at three different heat powers 6 W, 8 W and 10 W.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"69 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2025-0044","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The current trend of reducing the size of electronic devices in the industry has extensively increased the demand for effective heat dissipation, thereby intensifying the need for high-performance heat-dissipating devices. A promising approach to solve this challenge is the use of single-phase (SP), two-phase (TP), and supercritical fluids in micro-channels (MCs). Two-phase cooling is applicable only to those devices in which the tip temperature is high enough to allow the cooling fluid to convert into a two-phase state. In all other cases, only single-phase cooling can be utilized. In this work, numerical and experimental investigations on MC have been performed using water as the working fluid to predict TP behavior and heat dissipation from electronic devices using SP and TP flow. A numerical model of flow boiling heat transfer was developed based on conservation equations, which is solved to identify the existence of single and two-phase regions in the MC and to study the variation of pressure along its length at different heating powers. Further, experiments were performed in both SP and TP conditions to observe the nature of flow regimes and the impact of various parameters on effective heat dissipation through MCs well as temperature distribution. Numerical results were validated with experimental results, which showed good agreement. Several experiments were also carried out to develop an empirical correlation between mass flow rate and heat power to maintain the electronic device temperature below 40 °C. The developed correlation is experimentally validated at three different heat powers 6 W, 8 W and 10 W.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.