Davide Nodari, Zhuoran Qiao, Francesco Furlan, Oskar J. Sandberg, Koen Vandewal, Nicola Gasparini
{"title":"Towards high and reliable specific detectivity in visible and infrared perovskite and organic photodiodes","authors":"Davide Nodari, Zhuoran Qiao, Francesco Furlan, Oskar J. Sandberg, Koen Vandewal, Nicola Gasparini","doi":"10.1038/s41578-025-00830-1","DOIUrl":null,"url":null,"abstract":"<p>Perovskite and organic photodiodes have emerged as promising candidates for ultraviolet–visible and near-infrared photodetection owing to their tunable optoelectronic properties, solution processability and potential for low-cost fabrication. This Review provides a comprehensive overview of the recent advancements in these technologies. We focus on the characterization methodologies critical for assessing device performance, particularly specific detectivity (<i>D*</i>), the key metric for benchmarking photodetectors. We highlight state-of-the-art devices, identifying their architectures, materials and performance metrics, while analysing their fundamental charge recombination processes and device-level factors limiting further improvement. Finally, we discuss future research directions and technological innovations necessary to bridge the gap between laboratory-scale devices and their practical utilization in real-world applications. Our aim is to provide a roadmap for advancing the field towards next-generation high-performance and commercially viable photodiodes for ultraviolet–visible and infrared detection.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"14 1","pages":""},"PeriodicalIF":86.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41578-025-00830-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite and organic photodiodes have emerged as promising candidates for ultraviolet–visible and near-infrared photodetection owing to their tunable optoelectronic properties, solution processability and potential for low-cost fabrication. This Review provides a comprehensive overview of the recent advancements in these technologies. We focus on the characterization methodologies critical for assessing device performance, particularly specific detectivity (D*), the key metric for benchmarking photodetectors. We highlight state-of-the-art devices, identifying their architectures, materials and performance metrics, while analysing their fundamental charge recombination processes and device-level factors limiting further improvement. Finally, we discuss future research directions and technological innovations necessary to bridge the gap between laboratory-scale devices and their practical utilization in real-world applications. Our aim is to provide a roadmap for advancing the field towards next-generation high-performance and commercially viable photodiodes for ultraviolet–visible and infrared detection.
期刊介绍:
Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments.
Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.