Xinyu A. Feng, Maryam Yamadi, Yiben Fu, Kaitlin M. Ness, Celina Liu, Ishtiyaq Ahmed, Gregory D. Bowman, Margaret E. Johnson, Taekjip Ha, Carl Wu
{"title":"GAGA zinc finger transcription factor searches chromatin by 1D–3D facilitated diffusion","authors":"Xinyu A. Feng, Maryam Yamadi, Yiben Fu, Kaitlin M. Ness, Celina Liu, Ishtiyaq Ahmed, Gregory D. Bowman, Margaret E. Johnson, Taekjip Ha, Carl Wu","doi":"10.1038/s41594-025-01643-0","DOIUrl":null,"url":null,"abstract":"<p>The search for target sites on chromatin by eukaryotic sequence-specific transcription factors (TFs) is integral to the regulation of gene expression but the mechanism of nuclear exploration has remained obscure. Here we use multicolor single-molecule fluorescence resonance energy transfer and single-particle imaging to track the diffusion of purified <i>Drosophila</i> GAGA factor (GAF) on DNA and nucleosomes. Monomeric GAF DNA-binding domain (DBD) bearing one zinc finger finds its cognate site through one-dimensional (1D) or three-dimensional (3D) diffusion on bare DNA and rapidly slides back and forth between naturally clustered motifs for seconds before dissociation. Multimeric, full-length GAF also finds clustered motifs on DNA through 1D–3D diffusion but remains locked on target for longer periods. Nucleosome architecture effectively blocks GAF-DBD 1D sliding into the histone core but favors retention of GAF-DBD once it has bound to a solvent-exposed motif through 3D diffusion. Despite the occlusive nature of nucleosomes, 1D–3D facilitated diffusion enables GAF to effectively search for clustered cognate motifs in chromatin, providing a mechanism for navigation to nucleosomal and nucleosome-free sites by a member of the zinc finger TF family.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01643-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The search for target sites on chromatin by eukaryotic sequence-specific transcription factors (TFs) is integral to the regulation of gene expression but the mechanism of nuclear exploration has remained obscure. Here we use multicolor single-molecule fluorescence resonance energy transfer and single-particle imaging to track the diffusion of purified Drosophila GAGA factor (GAF) on DNA and nucleosomes. Monomeric GAF DNA-binding domain (DBD) bearing one zinc finger finds its cognate site through one-dimensional (1D) or three-dimensional (3D) diffusion on bare DNA and rapidly slides back and forth between naturally clustered motifs for seconds before dissociation. Multimeric, full-length GAF also finds clustered motifs on DNA through 1D–3D diffusion but remains locked on target for longer periods. Nucleosome architecture effectively blocks GAF-DBD 1D sliding into the histone core but favors retention of GAF-DBD once it has bound to a solvent-exposed motif through 3D diffusion. Despite the occlusive nature of nucleosomes, 1D–3D facilitated diffusion enables GAF to effectively search for clustered cognate motifs in chromatin, providing a mechanism for navigation to nucleosomal and nucleosome-free sites by a member of the zinc finger TF family.