Matthew Joliffe, Vadim Vorobyov and Jörg Wrachtrup
{"title":"Readout of strongly coupled NV center-pair spin states with deep neural networks","authors":"Matthew Joliffe, Vadim Vorobyov and Jörg Wrachtrup","doi":"10.1088/2058-9565/adf2d6","DOIUrl":null,"url":null,"abstract":"Optically addressable electron spin clusters are of interest for quantum computation, simulation and sensing. However, with interaction length scales of a few tens of nanometers in the strong coupling regime, they are unresolved in conventional confocal microscopy, making individual readout problematic. Here we show that when using a single shot readout technique, collective states of the combined register space become accessible. By using spin to charge conversion of the defects we draw the connection between the intricate photon count statistics with spin state readout using deep neural networks. This approach is particularly versatile with further scaling the number of constituent spins in a cluster due to complexity of the analytical treatment. We perform a proof of concept measurement of the correlated classical signal, paving the way for using our technique in realistic applications.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"29 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adf2d6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optically addressable electron spin clusters are of interest for quantum computation, simulation and sensing. However, with interaction length scales of a few tens of nanometers in the strong coupling regime, they are unresolved in conventional confocal microscopy, making individual readout problematic. Here we show that when using a single shot readout technique, collective states of the combined register space become accessible. By using spin to charge conversion of the defects we draw the connection between the intricate photon count statistics with spin state readout using deep neural networks. This approach is particularly versatile with further scaling the number of constituent spins in a cluster due to complexity of the analytical treatment. We perform a proof of concept measurement of the correlated classical signal, paving the way for using our technique in realistic applications.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.