Decoupled Control of CO2 and Nitrate Reduction Intermediates to Enable Efficient Tandem Urea Electrosynthesis

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-08-05 DOI:10.1021/acsnano.5c09017
Jiawei Liu, Ruihuan Duan, Yifan Xu, Chu Zhang, Chade Lv, Erhai Hu, Jiajian Gao, Bo Han, Carmen Lee, Zheng Liu, Li Li, Dongshuang Wu*, Man-Fai Ng* and Qingyu Yan*, 
{"title":"Decoupled Control of CO2 and Nitrate Reduction Intermediates to Enable Efficient Tandem Urea Electrosynthesis","authors":"Jiawei Liu,&nbsp;Ruihuan Duan,&nbsp;Yifan Xu,&nbsp;Chu Zhang,&nbsp;Chade Lv,&nbsp;Erhai Hu,&nbsp;Jiajian Gao,&nbsp;Bo Han,&nbsp;Carmen Lee,&nbsp;Zheng Liu,&nbsp;Li Li,&nbsp;Dongshuang Wu*,&nbsp;Man-Fai Ng* and Qingyu Yan*,&nbsp;","doi":"10.1021/acsnano.5c09017","DOIUrl":null,"url":null,"abstract":"<p >The direct electrochemical coupling of CO<sub>2</sub> and nitrate (NO<sub>3</sub><sup>–</sup>) offers a sustainable alternative to the energy-intensive Bosch–Meiser process for urea synthesis. However, achieving efficient C–N coupling at single active sites remains challenging due to the kinetic mismatch between CO<sub>2</sub> and NO<sub>3</sub><sup>–</sup> reduction, as well as the intricate multistep proton-coupled electron transfer process. Here, we present a sacrificial template-based strategy to synthesize a two-dimensional (2D)/zero-dimensional (0D) FeP<sub>0.9</sub>S<sub>2.9–<i>x</i></sub>/Ag<sub>2</sub>S heterostructure catalyst, enabling the tandem coreduction of CO<sub>2</sub> and nitrate for urea electrosynthesis. Electrochemical studies, <i>in situ</i> measurements, and theoretical calculations together demonstrate that the heterostructures with strongly coupled interfaces not only modulate the electronic structure but also enable decoupled control over NO<sub>3</sub><sup>–</sup> and CO<sub>2</sub> reduction. FeP<sub>0.9</sub>S<sub>2.9–<i>x</i></sub> offers a moderate conversion rate from NO<sub>3</sub><sup>–</sup> to ammonia, generating *NH<sub>2</sub> intermediates while mitigating overhydrogenation to ammonia. Meanwhile, Ag<sub>2</sub>S with optimized loading facilitates efficient conversion of CO<sub>2</sub> to CO, enabling the diffusion and electrophilic attack of CO on *NH<sub>2</sub>, thereby forming the critical *CONH<sub>2</sub> intermediate for urea production. As a result, the FeP<sub>0.9</sub>S<sub>2.9–<i>x</i></sub>/Ag<sub>2</sub>S tandem catalyst achieves a high urea yield rate of 1160.9 μg h<sup>–1</sup> mg<sub>cat</sub><sup>–1</sup> with a Faradaic efficiency (FE) of 15.4% at −0.7 vs reversible hydrogen electrode, outperforming the individual FeP<sub>0.9</sub>S<sub>2.9</sub> nanosheets and Ag<sub>2</sub>S nanoparticles. This study provides key insights into the rational design of heterostructure catalysts that exhibit strong interfacial interactions and allow for decoupled control over parallel reactions to enhance complex coupling processes.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 32","pages":"29646–29656"},"PeriodicalIF":16.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c09017","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The direct electrochemical coupling of CO2 and nitrate (NO3) offers a sustainable alternative to the energy-intensive Bosch–Meiser process for urea synthesis. However, achieving efficient C–N coupling at single active sites remains challenging due to the kinetic mismatch between CO2 and NO3 reduction, as well as the intricate multistep proton-coupled electron transfer process. Here, we present a sacrificial template-based strategy to synthesize a two-dimensional (2D)/zero-dimensional (0D) FeP0.9S2.9–x/Ag2S heterostructure catalyst, enabling the tandem coreduction of CO2 and nitrate for urea electrosynthesis. Electrochemical studies, in situ measurements, and theoretical calculations together demonstrate that the heterostructures with strongly coupled interfaces not only modulate the electronic structure but also enable decoupled control over NO3 and CO2 reduction. FeP0.9S2.9–x offers a moderate conversion rate from NO3 to ammonia, generating *NH2 intermediates while mitigating overhydrogenation to ammonia. Meanwhile, Ag2S with optimized loading facilitates efficient conversion of CO2 to CO, enabling the diffusion and electrophilic attack of CO on *NH2, thereby forming the critical *CONH2 intermediate for urea production. As a result, the FeP0.9S2.9–x/Ag2S tandem catalyst achieves a high urea yield rate of 1160.9 μg h–1 mgcat–1 with a Faradaic efficiency (FE) of 15.4% at −0.7 vs reversible hydrogen electrode, outperforming the individual FeP0.9S2.9 nanosheets and Ag2S nanoparticles. This study provides key insights into the rational design of heterostructure catalysts that exhibit strong interfacial interactions and allow for decoupled control over parallel reactions to enhance complex coupling processes.

Abstract Image

解耦控制CO2和硝酸盐还原中间体以实现高效串联尿素电合成。
二氧化碳和硝酸盐(NO3-)的直接电化学偶联为高能耗的Bosch-Meiser尿素合成工艺提供了一种可持续的替代方案。然而,由于CO2和NO3-还原之间的动力学不匹配以及复杂的多步质子耦合电子转移过程,在单个活性位点实现高效的C-N耦合仍然具有挑战性。在此,我们提出了一种基于牺牲模板的策略来合成二维(2D)/零维(0D) FeP0.9S2.9-x/Ag2S异质结构催化剂,使CO2和硝酸盐串联共还原用于尿素电合成。电化学研究、原位测量和理论计算共同表明,具有强耦合界面的异质结构不仅可以调节电子结构,而且可以对NO3-和CO2的还原进行解耦控制。FeP0.9S2.9-x从NO3-到氨的转化率适中,产生*NH2中间体,同时减轻过氢化反应产生氨。同时,优化负载的Ag2S有利于CO2高效转化为CO,使CO在*NH2上扩散和亲电攻击,从而形成尿素生产的关键*CONH2中间体。结果表明,在-0.7 vs可逆氢电极下,FeP0.9S2.9-x/Ag2S串联催化剂的尿素产率为1160.9 μg h-1 mgcat-1,法拉第效率(FE)为15.4%,优于单个FeP0.9S2.9纳米片和Ag2S纳米颗粒。这项研究为异质结构催化剂的合理设计提供了关键的见解,这些催化剂表现出强烈的界面相互作用,并允许对平行反应进行解耦控制,以增强复杂的耦合过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信