Precursor Film Growth of 2,7-Dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) in the Smectic a Liquid Crystal Phase for High-Performance Transistor Applications

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Kanae Tsujita, Shingo Maruyama*, Akira Hoshino, Taiga Saito, Eita Shoji, Kenichi Kaminaga and Yuji Matsumoto, 
{"title":"Precursor Film Growth of 2,7-Dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) in the Smectic a Liquid Crystal Phase for High-Performance Transistor Applications","authors":"Kanae Tsujita,&nbsp;Shingo Maruyama*,&nbsp;Akira Hoshino,&nbsp;Taiga Saito,&nbsp;Eita Shoji,&nbsp;Kenichi Kaminaga and Yuji Matsumoto,&nbsp;","doi":"10.1021/acs.langmuir.5c02951","DOIUrl":null,"url":null,"abstract":"<p >We present an approach to fabricating ultrathin organic semiconductor films via the smectic A liquid crystal precursor films of 2,7-dioctyl[1]benzothieno[3,2-<i>b</i>][1]benzothiophene (C8-BTBT) formed on Si and SiO<sub>2</sub>/Si substrates. Using phase-shifting imaging ellipsometry, we directly visualize the lateral spread of the precursor films in discrete monolayer terraces from the reservoir region, where each layer exhibits diffusive growth behavior. Additional X-ray reflectivity measurements confirm that these monolayers adopt a standing molecular orientation. We find that the first layer grows with an apparent diffusion coefficient (<i>D</i>) of the order of 10<sup>–9</sup> m<sup>2</sup> s<sup>–1</sup> at 115 °C, whereas the second layer grows more slowly. The substrate surface condition and substrate surface treatments significantly influence <i>D</i>. Moreover, the monolayer precursor film used as a template for subsequent C8-BTBT deposition improves the carrier mobility and environmental stability of its organic field-effect transistors, which are much better than those in the devices fabricated without the precursor films. These findings highlight the potential use of smectic precursor films as templates for fabricating high-quality ultrathin organic semiconductor films and thereby achieving a higher device performance in organic electronics.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 32","pages":"21816–21824"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.5c02951","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c02951","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present an approach to fabricating ultrathin organic semiconductor films via the smectic A liquid crystal precursor films of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) formed on Si and SiO2/Si substrates. Using phase-shifting imaging ellipsometry, we directly visualize the lateral spread of the precursor films in discrete monolayer terraces from the reservoir region, where each layer exhibits diffusive growth behavior. Additional X-ray reflectivity measurements confirm that these monolayers adopt a standing molecular orientation. We find that the first layer grows with an apparent diffusion coefficient (D) of the order of 10–9 m2 s–1 at 115 °C, whereas the second layer grows more slowly. The substrate surface condition and substrate surface treatments significantly influence D. Moreover, the monolayer precursor film used as a template for subsequent C8-BTBT deposition improves the carrier mobility and environmental stability of its organic field-effect transistors, which are much better than those in the devices fabricated without the precursor films. These findings highlight the potential use of smectic precursor films as templates for fabricating high-quality ultrathin organic semiconductor films and thereby achieving a higher device performance in organic electronics.

高性能晶体管用2,7-二辛基[1]苯并噻吩[3,2-b][1]苯并噻吩(C8-BTBT)在smic a液晶相中的前驱膜生长
我们提出了一种利用在Si和SiO2/Si衬底上形成的2,7-二辛基[1]苯并噻吩[3,2-b][1]苯并噻吩(C8-BTBT)的近晶A液晶前驱体膜制备超薄有机半导体薄膜的方法。利用相移成像椭偏仪,我们直接看到了油藏区离散单层阶地中前驱体膜的横向扩展,其中每层都表现出扩散生长行为。额外的x射线反射率测量证实这些单层采用固定的分子取向。我们发现,在115°C时,第一层的表观扩散系数(D)为10-9 m2 s-1,而第二层的生长速度较慢。衬底表面条件和衬底表面处理对d有显著影响。此外,作为C8-BTBT后续沉积模板的单层前驱体膜提高了其有机场效应晶体管的载流子迁移率和环境稳定性,远远优于未制备前驱体膜的器件。这些发现突出了smic前驱体薄膜作为模板的潜在用途,用于制造高质量的超薄有机半导体薄膜,从而在有机电子中实现更高的器件性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信