Identification of novel sources of resistance to squash leaf curl China virus (SLCCNV) and cucurbit chlorotic yellows virus (CCYV) and inheritance analysis of SLCCNV resistance in pumpkin (Cucurbita moschata Duchesne ex Poir.).
Bichhinna Maitri Rout, Amish Kumar Sureja, S Subramanian, S Gopala Krishnan, Anirban Roy, Prasanta Kumar Dash, Anilabha Das Munshi
{"title":"Identification of novel sources of resistance to squash leaf curl China virus (SLCCNV) and cucurbit chlorotic yellows virus (CCYV) and inheritance analysis of SLCCNV resistance in pumpkin (<i>Cucurbita moschata</i> Duchesne ex Poir.).","authors":"Bichhinna Maitri Rout, Amish Kumar Sureja, S Subramanian, S Gopala Krishnan, Anirban Roy, Prasanta Kumar Dash, Anilabha Das Munshi","doi":"10.1007/s12298-025-01613-2","DOIUrl":null,"url":null,"abstract":"<p><p>Pumpkin (<i>Cucurbita moschata</i> Duchesne ex. Poir) is susceptible to various viral infections which significantly hinder its production, impacting agricultural sustainability and food security. The susceptibility of fifty four pumpkin genotypes to squash leaf curl China virus (SLCCNV) and cucurbit chlorotic yellows virus (CCYV) was assessed over two consecutive seasons (2021 rainy and 2022 spring-summer) and in 2023 (spring-summer), specifically for only SLCCNV, through screening in an insect-proof net house under whitefly inoculation conditions. Disease progression was evaluated through the vulnerability index (VI) and the area under the disease progress curve (AUDPC). During 2021 and 2022, on the basis of challenge inoculation studies, highly resistant genotypes (DPU-41, DPU-43, DPU-133, and DPU-105) consistently presented no symptoms and no PCR amplification of SLCCNV or CCYV. Furthermore, during 2023, four genotypes (DPU-41, DPU-43, DPU-133 and DPU-105) presented high resistance levels (VI = 0) to SLCCNV. VI and AUDPC exhibited a significant positive correlation (> 0.96) for whitefly-mediated inoculation screening during 2021 and 2022. Quantitative polymerase chain reaction (qPCR) analysis revealed no detectable SLCCNV load in the highly resistant (DPU-41, DPU-43, DPU-133, and DPU-105) and resistant (DPU-101, and DPU-129) genotypes, with cycle threshold (Ct) values indicating the absence of the virus. Furthermore, inheritance studies involving susceptible and resistant genotypes across six generations (P<sub>1</sub>, P<sub>2</sub>, F<sub>1</sub>, F<sub>2</sub>, B<sub>1</sub>, B<sub>2</sub>) revealed a single dominant gene governing resistance to SLCCNV in the DPU-41 and DPU-43 genotypes. The present findings are the first to reveal the single dominant gene inheritance of resistance to SLCCNV in pumpkin. This study contributes to understanding resistance in pumpkin genotypes against SLCCNV and CCYV, offering a foundation for breeding programs focused on producing resistant varieties.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01613-2.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 6","pages":"913-929"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314156/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01613-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Pumpkin (Cucurbita moschata Duchesne ex. Poir) is susceptible to various viral infections which significantly hinder its production, impacting agricultural sustainability and food security. The susceptibility of fifty four pumpkin genotypes to squash leaf curl China virus (SLCCNV) and cucurbit chlorotic yellows virus (CCYV) was assessed over two consecutive seasons (2021 rainy and 2022 spring-summer) and in 2023 (spring-summer), specifically for only SLCCNV, through screening in an insect-proof net house under whitefly inoculation conditions. Disease progression was evaluated through the vulnerability index (VI) and the area under the disease progress curve (AUDPC). During 2021 and 2022, on the basis of challenge inoculation studies, highly resistant genotypes (DPU-41, DPU-43, DPU-133, and DPU-105) consistently presented no symptoms and no PCR amplification of SLCCNV or CCYV. Furthermore, during 2023, four genotypes (DPU-41, DPU-43, DPU-133 and DPU-105) presented high resistance levels (VI = 0) to SLCCNV. VI and AUDPC exhibited a significant positive correlation (> 0.96) for whitefly-mediated inoculation screening during 2021 and 2022. Quantitative polymerase chain reaction (qPCR) analysis revealed no detectable SLCCNV load in the highly resistant (DPU-41, DPU-43, DPU-133, and DPU-105) and resistant (DPU-101, and DPU-129) genotypes, with cycle threshold (Ct) values indicating the absence of the virus. Furthermore, inheritance studies involving susceptible and resistant genotypes across six generations (P1, P2, F1, F2, B1, B2) revealed a single dominant gene governing resistance to SLCCNV in the DPU-41 and DPU-43 genotypes. The present findings are the first to reveal the single dominant gene inheritance of resistance to SLCCNV in pumpkin. This study contributes to understanding resistance in pumpkin genotypes against SLCCNV and CCYV, offering a foundation for breeding programs focused on producing resistant varieties.
Graphical abstract:
Supplementary information: The online version contains supplementary material available at 10.1007/s12298-025-01613-2.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.