Green synthesized silver nanoparticles enhance drought tolerance in cotton plants cultured in vitro.

IF 3.3 3区 生物学 Q1 PLANT SCIENCES
Gizem Şafak Baransel, Oğuz Yücel, Eren Yıldırım, Göksenin Kalyon, Serkan Emik, Ayşe Erol, Neslihan Turgut Kara
{"title":"Green synthesized silver nanoparticles enhance drought tolerance in cotton plants cultured in vitro.","authors":"Gizem Şafak Baransel, Oğuz Yücel, Eren Yıldırım, Göksenin Kalyon, Serkan Emik, Ayşe Erol, Neslihan Turgut Kara","doi":"10.1007/s12298-025-01616-z","DOIUrl":null,"url":null,"abstract":"<p><p>The study investigated the effects and potential applications of green-synthesized silver nanoparticles (AgNPs) on cotton plants under in vitro drought stress. AgNPs were synthesized using cotton seed oil cake extract (CSOCE) as a stabilizing and reducing agent. The secondary metabolite content of CSOCE was analyzed using High Performance Liquid Chromatography (HPLC). Characterization of synthesized AgNPs was performed using Dynamic Light Scattering (DLS), polydispersity index (PDI), Zeta Potential (ZP), Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy (SEM-EDS), X-Ray Diffraction Analysis (XRD), Ultraviolet-Visible Light Spectroscopy (UV-Vis spectroscopy), and Fourier Transform Infrared Spectrometry (FTIR) analyses. According to SEM, the nanoparticle sizes varied between 50 and 100 nm. ZP was - 28.7 mV and PDI value was 0.65 according to DLS results. The experimental groups were: (1) MS medium (control group), (2) PEG, (3) AgNP, and (4) PEG + AgNP. Plants were transferred to the respective media, cultured for three days, and subsequently analyzed. Morphological parameters including root number, root and shoot lengths, and leaf surface area were measured, while physiological traits such as relative water content, biomass accumulation, osmolyte accumulation, and photosynthetic pigment contents were assessed. Molecular analyses were conducted to examine the relative gene expression of drought stress-associated genes, including <i>CAT</i>, <i>POD</i>, <i>Cu/Zn SOD</i>, <i>MnSOD</i>, <i>MPK17</i>, <i>CAX2</i>, and <i>IDI-1</i>. The results demonstrated that the application of AgNPs alleviated the adverse effects of in vitro drought stress on <i>Gossypium hirsutum</i> plants. These findings suggest that green synthesized AgNPs hold significant potential as agents to mitigate drought stress in plants.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01616-z.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 6","pages":"959-978"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314283/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01616-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The study investigated the effects and potential applications of green-synthesized silver nanoparticles (AgNPs) on cotton plants under in vitro drought stress. AgNPs were synthesized using cotton seed oil cake extract (CSOCE) as a stabilizing and reducing agent. The secondary metabolite content of CSOCE was analyzed using High Performance Liquid Chromatography (HPLC). Characterization of synthesized AgNPs was performed using Dynamic Light Scattering (DLS), polydispersity index (PDI), Zeta Potential (ZP), Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy (SEM-EDS), X-Ray Diffraction Analysis (XRD), Ultraviolet-Visible Light Spectroscopy (UV-Vis spectroscopy), and Fourier Transform Infrared Spectrometry (FTIR) analyses. According to SEM, the nanoparticle sizes varied between 50 and 100 nm. ZP was - 28.7 mV and PDI value was 0.65 according to DLS results. The experimental groups were: (1) MS medium (control group), (2) PEG, (3) AgNP, and (4) PEG + AgNP. Plants were transferred to the respective media, cultured for three days, and subsequently analyzed. Morphological parameters including root number, root and shoot lengths, and leaf surface area were measured, while physiological traits such as relative water content, biomass accumulation, osmolyte accumulation, and photosynthetic pigment contents were assessed. Molecular analyses were conducted to examine the relative gene expression of drought stress-associated genes, including CAT, POD, Cu/Zn SOD, MnSOD, MPK17, CAX2, and IDI-1. The results demonstrated that the application of AgNPs alleviated the adverse effects of in vitro drought stress on Gossypium hirsutum plants. These findings suggest that green synthesized AgNPs hold significant potential as agents to mitigate drought stress in plants.

Supplementary information: The online version contains supplementary material available at 10.1007/s12298-025-01616-z.

Abstract Image

Abstract Image

Abstract Image

绿色合成纳米银提高棉花的抗旱性。
研究了绿色合成纳米银(AgNPs)对棉花体外干旱胁迫的影响及其潜在应用前景。以棉籽油饼提取物(CSOCE)为稳定还原剂合成AgNPs。采用高效液相色谱法对CSOCE的次生代谢物含量进行了分析。采用动态光散射(DLS)、多分散性指数(PDI)、Zeta电位(ZP)、扫描电子显微镜和能量色散x射线能谱(SEM-EDS)、x射线衍射分析(XRD)、紫外可见光谱(UV-Vis)和傅里叶变换红外光谱(FTIR)分析对合成的AgNPs进行表征。根据扫描电镜,纳米颗粒的尺寸在50到100纳米之间变化。DLS结果显示ZP为- 28.7 mV, PDI为0.65。实验组为:(1)MS培养基(对照组),(2)PEG, (3) AgNP, (4) PEG + AgNP。将植株转移到各自的培养基上,培养三天,随后进行分析。测定根系数、根冠长、叶表面积等形态参数,评估相对含水量、生物量积累、渗透物积累和光合色素含量等生理性状。通过分子分析检测干旱胁迫相关基因CAT、POD、Cu/Zn SOD、MnSOD、MPK17、CAX2和idi1的相对基因表达情况。结果表明,AgNPs的施用减轻了离体干旱胁迫对绵棉植株的不利影响。这些发现表明,绿色合成AgNPs作为缓解植物干旱胁迫的药剂具有巨大的潜力。补充信息:在线版本包含补充资料,提供地址为10.1007/s12298-025-01616-z。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
126
期刊介绍: Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信