{"title":"ADAM17 Supports Disinhibition of Pre-sympathetic Glutamatergic Neurons Through Microglial Chemotaxis.","authors":"Jiawei Wang, Zihan Qiu, Yue Han, Hanxue Wu, Miao Yuan, Yan Liu, Huichao Wang, Shenglan Yuan, Dengfeng Gao, Lina Sun, Xingjuan Chen, Eric Lazartigues, Fanni Li, Rui Yang, Jiaxi Xu","doi":"10.1007/s12264-025-01471-8","DOIUrl":null,"url":null,"abstract":"<p><p>A disintegrin and metalloprotease 17 (ADAM17) is a membrane-bound enzyme that cleaves cell-surface proteins. Here, we discovered that neuronal ADAM17-mediated signaling supports the reduction of inhibitory presynaptic inputs to the pre-sympathetic glutamatergic neural hub, located in the paraventricular nucleus of the hypothalamus (PVN), upon stimulation by angiotensin II (Ang-II). For Ang-II-induced disinhibition, targeting microglial migration had an effect similar to ADAM17 knockout in glutamatergic neurons. Ang-II promoted neuron-mediated chemotaxis of microglia via neuronal CX3CL1 and ADAM17. Inhibiting microglial chemotaxis by targeting CX3CR1 abolished the Ang-II-induced microglial displacement of GABAergic presynaptic terminals and significantly blunted Ang-II's pressor response. Using conditional and targeted knockout models of ADAM17, an increase in the contact between pre-sympathetic neurons and reactive microglia in the PVN was demonstrated to be neuronal ADAM17-dependent during the developmental stage of salt-sensitive hypertension. Collectively, this study provides evidence that neuronal ADAM17-mediated microglial chemotaxis facilitates the disinhibition of pre-sympathetic glutamatergic tone upon hormonal stimulation.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01471-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A disintegrin and metalloprotease 17 (ADAM17) is a membrane-bound enzyme that cleaves cell-surface proteins. Here, we discovered that neuronal ADAM17-mediated signaling supports the reduction of inhibitory presynaptic inputs to the pre-sympathetic glutamatergic neural hub, located in the paraventricular nucleus of the hypothalamus (PVN), upon stimulation by angiotensin II (Ang-II). For Ang-II-induced disinhibition, targeting microglial migration had an effect similar to ADAM17 knockout in glutamatergic neurons. Ang-II promoted neuron-mediated chemotaxis of microglia via neuronal CX3CL1 and ADAM17. Inhibiting microglial chemotaxis by targeting CX3CR1 abolished the Ang-II-induced microglial displacement of GABAergic presynaptic terminals and significantly blunted Ang-II's pressor response. Using conditional and targeted knockout models of ADAM17, an increase in the contact between pre-sympathetic neurons and reactive microglia in the PVN was demonstrated to be neuronal ADAM17-dependent during the developmental stage of salt-sensitive hypertension. Collectively, this study provides evidence that neuronal ADAM17-mediated microglial chemotaxis facilitates the disinhibition of pre-sympathetic glutamatergic tone upon hormonal stimulation.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.