{"title":"Possible role of microtubules in vesicular transport of matrix protein during sea urchin larval biomineralization.","authors":"Areen Qassem, Tsvia Gildor, Smadar Ben-Tabou de-Leon","doi":"10.1002/dvdy.70068","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Biomineralization is a vital biological process through which organisms produce mineralized structures such as shells, skeletons, and teeth. Microtubules are essential for biomineralization in various eukaryotic species; however, their specific roles in this process remain unclear.</p><p><strong>Results: </strong>Here, we investigated the structure and function of microtubule filaments and their co-localization with matrix and focal adhesion proteins during the elongation of the calcite spicules of the sea urchin larva. First, we show that inhibiting microtubule polymerization using Nocodazole in whole embryos and isolated skeletogenic cell cultures results in a significant reduction of skeletal growth and affects skeletal morphology. Next, we demonstrate that microtubule filaments elongate from around the skeletogenic nuclei to the biomineralization compartment where they overlap with active focal adhesion kinase. The expression of spicule matrix proteins overlaps with microtubule filaments around the nuclei and with microtubule filaments that elongate to the spicule cavity.</p><p><strong>Conclusions: </strong>We propose that vesicles bearing matrix proteins are trafficked on microtubules to the spicule cavity where their exocytosis is assisted by focal adhesions. The role of microtubules in biomineralization from unicellular algae to human bones suggests that the proposed microtubule-guided vesicle transport into the biomineralization compartment could be a common mechanism in Eukaryotes' biomineralization.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/dvdy.70068","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Biomineralization is a vital biological process through which organisms produce mineralized structures such as shells, skeletons, and teeth. Microtubules are essential for biomineralization in various eukaryotic species; however, their specific roles in this process remain unclear.
Results: Here, we investigated the structure and function of microtubule filaments and their co-localization with matrix and focal adhesion proteins during the elongation of the calcite spicules of the sea urchin larva. First, we show that inhibiting microtubule polymerization using Nocodazole in whole embryos and isolated skeletogenic cell cultures results in a significant reduction of skeletal growth and affects skeletal morphology. Next, we demonstrate that microtubule filaments elongate from around the skeletogenic nuclei to the biomineralization compartment where they overlap with active focal adhesion kinase. The expression of spicule matrix proteins overlaps with microtubule filaments around the nuclei and with microtubule filaments that elongate to the spicule cavity.
Conclusions: We propose that vesicles bearing matrix proteins are trafficked on microtubules to the spicule cavity where their exocytosis is assisted by focal adhesions. The role of microtubules in biomineralization from unicellular algae to human bones suggests that the proposed microtubule-guided vesicle transport into the biomineralization compartment could be a common mechanism in Eukaryotes' biomineralization.
期刊介绍:
Developmental Dynamics, is an official publication of the American Association for Anatomy. This peer reviewed journal provides an international forum for publishing novel discoveries, using any model system, that advances our understanding of development, morphology, form and function, evolution, disease, stem cells, repair and regeneration.