Prediction of protein-protein interaction based on interaction-specific learning and hierarchical information.

IF 4.5 1区 生物学 Q1 BIOLOGY
Tao Tang, Taiguang Shen, Jing Jiang, Weizhuo Li, Peng Wang, Sisi Yuan, Xiaofeng Cao, Yuansheng Liu
{"title":"Prediction of protein-protein interaction based on interaction-specific learning and hierarchical information.","authors":"Tao Tang, Taiguang Shen, Jing Jiang, Weizhuo Li, Peng Wang, Sisi Yuan, Xiaofeng Cao, Yuansheng Liu","doi":"10.1186/s12915-025-02359-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prediction of protein-protein interactions (PPIs) is fundamental for identifying drug targets and understanding cellular processes. The rapid growth of PPI studies necessitates the development of efficient and accurate tools for automated prediction of PPIs. In recent years, several robust deep learning models have been developed for PPI prediction and have found widespread application in proteomics research. Despite these advancements, current computational tools still face limitations in modeling both the pairwise interactions and the hierarchical relationships between proteins.</p><p><strong>Results: </strong>We present HI-PPI, a novel deep learning method that integrates hierarchical representation of PPI network and interaction-specific learning for protein-protein interaction prediction. HI-PPI extracts the hierarchical information by embedding structural and relational information into hyperbolic space. A gated interaction network is then employed to extract pairwise features for interaction prediction. Experiments on multiple benchmark datasets demonstrate that HI-PPI outperforms the state-of-the-art methods; HI-PPI improves Micro-F1 scores by 2.62%-7.09% over the second-best method. Moreover, HI-PPI offers explicit interpretability of the hierarchical organization within the PPI network. The distance between the origin and the hyperbolic embedding computed by HI-PPI naturally reflects the hierarchical level of proteins.</p><p><strong>Conclusions: </strong>Overall, the proposed HI-PPI effectively addresses the limitations of existing PPI prediction methods. By leveraging the hierarchical structure of PPI network, HI-PPI significantly enhances the accuracy and robustness of PPI predictions.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"236"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320375/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02359-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Prediction of protein-protein interactions (PPIs) is fundamental for identifying drug targets and understanding cellular processes. The rapid growth of PPI studies necessitates the development of efficient and accurate tools for automated prediction of PPIs. In recent years, several robust deep learning models have been developed for PPI prediction and have found widespread application in proteomics research. Despite these advancements, current computational tools still face limitations in modeling both the pairwise interactions and the hierarchical relationships between proteins.

Results: We present HI-PPI, a novel deep learning method that integrates hierarchical representation of PPI network and interaction-specific learning for protein-protein interaction prediction. HI-PPI extracts the hierarchical information by embedding structural and relational information into hyperbolic space. A gated interaction network is then employed to extract pairwise features for interaction prediction. Experiments on multiple benchmark datasets demonstrate that HI-PPI outperforms the state-of-the-art methods; HI-PPI improves Micro-F1 scores by 2.62%-7.09% over the second-best method. Moreover, HI-PPI offers explicit interpretability of the hierarchical organization within the PPI network. The distance between the origin and the hyperbolic embedding computed by HI-PPI naturally reflects the hierarchical level of proteins.

Conclusions: Overall, the proposed HI-PPI effectively addresses the limitations of existing PPI prediction methods. By leveraging the hierarchical structure of PPI network, HI-PPI significantly enhances the accuracy and robustness of PPI predictions.

Abstract Image

Abstract Image

Abstract Image

基于相互作用特异性学习和层次信息的蛋白质-蛋白质相互作用预测。
背景:蛋白质-蛋白质相互作用(PPIs)的预测是确定药物靶点和理解细胞过程的基础。PPI研究的快速增长需要开发高效准确的工具来自动预测PPI。近年来,一些强大的深度学习模型已经被开发用于PPI预测,并在蛋白质组学研究中得到了广泛的应用。尽管取得了这些进步,但目前的计算工具在模拟蛋白质之间的成对相互作用和层次关系方面仍然面临局限性。结果:我们提出了一种新的深度学习方法HI-PPI,它集成了PPI网络的分层表示和用于蛋白质-蛋白质相互作用预测的相互作用特异性学习。HI-PPI通过在双曲空间中嵌入结构信息和关系信息来提取层次信息。然后采用门控交互网络提取两两特征进行交互预测。在多个基准数据集上的实验表明,HI-PPI优于最先进的方法;HI-PPI比次优方法提高了2.62%-7.09%的Micro-F1评分。此外,HI-PPI提供了PPI网络中层级组织的明确可解释性。HI-PPI计算的原点和双曲嵌入之间的距离自然地反映了蛋白质的层次水平。结论:总的来说,提出的HI-PPI有效地解决了现有PPI预测方法的局限性。通过利用PPI网络的层次结构,HI-PPI显著提高了PPI预测的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信