Cone Vertex Algebras, Mock Theta Functions, and Umbral Moonshine Modules

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Miranda C. N. Cheng, Gabriele Sgroi
{"title":"Cone Vertex Algebras, Mock Theta Functions, and Umbral Moonshine Modules","authors":"Miranda C. N. Cheng,&nbsp;Gabriele Sgroi","doi":"10.1007/s00220-025-05376-5","DOIUrl":null,"url":null,"abstract":"<div><p>We describe a family of indefinite theta functions of signature (1, 1) that can be expressed in terms of trace functions of vertex algebras built from cones in lattices. The family of indefinite theta functions considered has interesting connections with mock theta functions and Appell–Lerch sums. We use these relations to write the McKay–Thompson series of umbral moonshine at lambency <span>\\(\\ell =8,12,16\\)</span> in terms of trace functions of vertex algebras modules, and thereby provide the modules for these instances of umbral moonshine.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05376-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a family of indefinite theta functions of signature (1, 1) that can be expressed in terms of trace functions of vertex algebras built from cones in lattices. The family of indefinite theta functions considered has interesting connections with mock theta functions and Appell–Lerch sums. We use these relations to write the McKay–Thompson series of umbral moonshine at lambency \(\ell =8,12,16\) in terms of trace functions of vertex algebras modules, and thereby provide the modules for these instances of umbral moonshine.

Abstract Image

圆锥顶点代数,模拟Theta函数,和本影月光模块。
我们描述了一类特征为(1,1)的不定函数,它们可以用由格子中的锥构成的顶点代数的迹函数来表示。所考虑的不定函数族与模拟函数和apell - lerch和有有趣的联系。利用这些关系,我们用顶点代数模的迹函数写出了在余量为8,12,16时本影月光的McKay-Thompson级数,从而给出了这些本影月光实例的模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信