Strategically Constructing Alkali-Metal Interfacial Bridges to Boost Photocatalytic CO2 Methanation on Supported Ni─Ru Bimetallic Catalysts.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaolei Guo, Yuqi Wu, Shengrong Zhou, Yuhang Shao, Yasuo Izumi, Jinlu He, Hongwei Zhang
{"title":"Strategically Constructing Alkali-Metal Interfacial Bridges to Boost Photocatalytic CO<sub>2</sub> Methanation on Supported Ni─Ru Bimetallic Catalysts.","authors":"Xiaolei Guo, Yuqi Wu, Shengrong Zhou, Yuhang Shao, Yasuo Izumi, Jinlu He, Hongwei Zhang","doi":"10.1002/advs.202509454","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient photocatalytic conversion of CO<sub>2</sub> into CH<sub>4</sub> is crucial yet challenging due to the complex multi-electron transfer processes and sluggish intermediate transformation. Herein, an innovative strategy is introduced to dramatically enhance photocatalytic CO<sub>2</sub> methanation by constructing interfacial alkali-metal bridges (Na<sub>inter</sub>) between Ni and Ru nanoparticles over ZrO<sub>2</sub> surface. By selectively introducing and subsequently removing excessive surface Na species, stable interfacial Na species are retained, forming a distinctive Ni<sup>0</sup>─Ni<sup>δ+</sup>─Na<sub>inter</sub>─O─Ru electronic bridge. Comprehensive structural and electronic characterizations (XRD, TEM, XAFS, XPS, DRIFTS) demonstrate that the interfacial Na bridge significantly improves electronic communication between Ni and Ru, enhances charge separation efficiency, optimizes CO<sub>2</sub> adsorption, and lowers activation barriers for key intermediates. As a result, the optimized catalyst (0.2Na─Ni─Ru/ZrO<sub>2</sub>) achieves an exceptionally high CH<sub>4</sub> production rate of 1882.7 µmol·g<sup>-1</sup>·h<sup>-1</sup>, ≈15-fold that of the Na-free catalyst, with excellent stability and durability. DFT calculations reveal that the Na<sub>inter</sub> site effectively stabilizes reactive intermediates, greatly accelerating formate to CO conversion and reshaping the reaction pathway. This work highlights alkali-metal-mediated interfacial engineering as a versatile approach to enhance the synergy in multi-component catalysts, opening a new avenue for advanced photocatalytic CO<sub>2</sub> reduction.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e09454"},"PeriodicalIF":14.1000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202509454","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient photocatalytic conversion of CO2 into CH4 is crucial yet challenging due to the complex multi-electron transfer processes and sluggish intermediate transformation. Herein, an innovative strategy is introduced to dramatically enhance photocatalytic CO2 methanation by constructing interfacial alkali-metal bridges (Nainter) between Ni and Ru nanoparticles over ZrO2 surface. By selectively introducing and subsequently removing excessive surface Na species, stable interfacial Na species are retained, forming a distinctive Ni0─Niδ+─Nainter─O─Ru electronic bridge. Comprehensive structural and electronic characterizations (XRD, TEM, XAFS, XPS, DRIFTS) demonstrate that the interfacial Na bridge significantly improves electronic communication between Ni and Ru, enhances charge separation efficiency, optimizes CO2 adsorption, and lowers activation barriers for key intermediates. As a result, the optimized catalyst (0.2Na─Ni─Ru/ZrO2) achieves an exceptionally high CH4 production rate of 1882.7 µmol·g-1·h-1, ≈15-fold that of the Na-free catalyst, with excellent stability and durability. DFT calculations reveal that the Nainter site effectively stabilizes reactive intermediates, greatly accelerating formate to CO conversion and reshaping the reaction pathway. This work highlights alkali-metal-mediated interfacial engineering as a versatile approach to enhance the synergy in multi-component catalysts, opening a new avenue for advanced photocatalytic CO2 reduction.

战略性构建碱-金属界面桥以促进负载型Ni─Ru双金属催化剂光催化CO2甲烷化。
由于复杂的多电子转移过程和缓慢的中间转化,CO2有效的光催化转化为CH4是至关重要的,但也具有挑战性。本文介绍了一种创新的策略,通过在ZrO2表面上构建Ni和Ru纳米颗粒之间的界面碱金属桥(Nainter)来显著增强光催化CO2甲烷化。通过选择性地引入和随后去除过量的表面Na,保留了稳定的界面Na,形成了独特的Ni0─Niδ+─Nainter─O─Ru电子桥。综合结构和电子表征(XRD, TEM, XAFS, XPS, DRIFTS)表明,界面Na桥显著改善了Ni和Ru之间的电子通信,提高了电荷分离效率,优化了CO2吸附,降低了关键中间体的活化势垒。结果表明,优化后的催化剂(0.2Na─Ni─Ru/ZrO2)的CH4产率高达1882.7µmol·g-1·h-1,是无na催化剂的约15倍,且具有良好的稳定性和耐久性。DFT计算表明,Nainter位点有效地稳定了反应中间体,极大地加速了甲酸到CO的转化,重塑了反应途径。这项工作强调了碱金属介导的界面工程作为一种增强多组分催化剂协同作用的通用方法,为先进的光催化CO2还原开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信