Sacrificial Template-Derived CoMo-LDH Gas Diffusion Electrode for Anion Exchange Membrane Water Electrolysis.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sung Jun Lee, Youngtae Park, Seung Hun Lee, Seo Hyun Park, In Tae Kim, Youngji Kim, Baek San Soh, Geon Hwee Kim, Jooyoung Lee, Seunghwa Lee, Kihyun Shin, Yoo Sei Park
{"title":"Sacrificial Template-Derived CoMo-LDH Gas Diffusion Electrode for Anion Exchange Membrane Water Electrolysis.","authors":"Sung Jun Lee, Youngtae Park, Seung Hun Lee, Seo Hyun Park, In Tae Kim, Youngji Kim, Baek San Soh, Geon Hwee Kim, Jooyoung Lee, Seunghwa Lee, Kihyun Shin, Yoo Sei Park","doi":"10.1002/advs.202508370","DOIUrl":null,"url":null,"abstract":"<p><p>Anion exchange membrane water electrolysis (AEMWE) offers a cost-effective and efficient platform for hydrogen production by enabling the use of non-platinum group metal (non-PGM) electrode materials. However, the sluggish kinetics of the oxygen evolution reaction (OER) remains a key challenge. In this study, a CoMo-LDH OER electrode for AEMWE is developed via a sacrificial template strategy. The high valence state of Mo promotes oxygen vacancy formation, enhancing OER performance. Electrochemical reconstruction also induces a phase transition into active (oxy)hydroxide species during OER. Density functional theory (DFT) calculations show that the weak OH<sup>-</sup> adsorption energy of CoMo-LDH lowers the energy barrier for OH<sup>-</sup> deprotonation, improving catalytic activity. The CoMo-LDH electrode demonstrates superior performance in AEMWE compared to the PGM-based IrO<sub>2</sub> electrode. This study highlights the potential of sacrificial template-based electrodes for high-performance AEMWE.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e08370"},"PeriodicalIF":14.1000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202508370","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Anion exchange membrane water electrolysis (AEMWE) offers a cost-effective and efficient platform for hydrogen production by enabling the use of non-platinum group metal (non-PGM) electrode materials. However, the sluggish kinetics of the oxygen evolution reaction (OER) remains a key challenge. In this study, a CoMo-LDH OER electrode for AEMWE is developed via a sacrificial template strategy. The high valence state of Mo promotes oxygen vacancy formation, enhancing OER performance. Electrochemical reconstruction also induces a phase transition into active (oxy)hydroxide species during OER. Density functional theory (DFT) calculations show that the weak OH- adsorption energy of CoMo-LDH lowers the energy barrier for OH- deprotonation, improving catalytic activity. The CoMo-LDH electrode demonstrates superior performance in AEMWE compared to the PGM-based IrO2 electrode. This study highlights the potential of sacrificial template-based electrodes for high-performance AEMWE.

牺牲模板衍生的CoMo-LDH气体扩散电极用于阴离子交换膜电解。
阴离子交换膜电解(AEMWE)通过使用非铂族金属(non-PGM)电极材料,为制氢提供了一个经济高效的平台。然而,缓慢的析氧反应(OER)动力学仍然是一个关键的挑战。在本研究中,通过牺牲模板策略开发了用于AEMWE的CoMo-LDH OER电极。Mo的高价态促进了氧空位的形成,提高了OER性能。在OER过程中,电化学重构也诱导了向活性(氧)氢氧化物的相变。密度泛函理论(DFT)计算表明,CoMo-LDH的弱OH-吸附能降低了OH-去质子化的能垒,提高了催化活性。与pgm基IrO2电极相比,CoMo-LDH电极在AEMWE中表现出优越的性能。这项研究强调了牺牲模板电极在高性能AEMWE中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信