{"title":"Unveiling Temperature-Dependent Behavior of AlN Piezoelectric Single Crystal: Insights at the Atomic Scale","authors":"Yajing Fan, Lili Li, Linyu Bai, Qingzhi Song, Zijian Liu, Yanlu Li, Guodong Wang, Xiulan Duan, Lei Zhang, Fapeng Yu, Xiufeng Cheng, Xian Zhao","doi":"10.1002/eem2.70027","DOIUrl":null,"url":null,"abstract":"<p>Enhancing the stability of piezoelectric properties is essential for ensuring the reliability of high-temperature piezoelectric sensors. In this study, we have synthesized AlN piezoelectric crystals as representative materials and employed first-principles methods to investigate their temperature-dependent piezoelectric properties. By integrating the effects of lattice expansion and electron–phonon interactions, we accurately constructed the crystal structure of AlN across a wide temperature range and successfully predicted its piezoelectric behavior. Theoretical analysis reveals that ion polarization driven by lattice distortion and elastic softening of chemical bonds maintains the overall structural integrity of defect-free AlN single crystals, resulting in a stable piezoelectric coefficient <i>d</i><sub>33</sub> with a deviation of only 8.55% at temperatures up to 1300 K. However, experimental results indicate that the stability of the piezoelectric performance of the grown AlN crystals is disrupted at temperatures above 870 K. This temperature limitation is attributed to point defects within AlN crystals, particularly those caused by oxygen-substituted nitrogen (O<sub>N</sub>). These findings provide valuable guidance for enhancing the piezoelectric temperature stability of AlN crystals through optimized experimental conditions, such as oxygen atmosphere treatment and defect modification during crystal growth.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 5","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.70027","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing the stability of piezoelectric properties is essential for ensuring the reliability of high-temperature piezoelectric sensors. In this study, we have synthesized AlN piezoelectric crystals as representative materials and employed first-principles methods to investigate their temperature-dependent piezoelectric properties. By integrating the effects of lattice expansion and electron–phonon interactions, we accurately constructed the crystal structure of AlN across a wide temperature range and successfully predicted its piezoelectric behavior. Theoretical analysis reveals that ion polarization driven by lattice distortion and elastic softening of chemical bonds maintains the overall structural integrity of defect-free AlN single crystals, resulting in a stable piezoelectric coefficient d33 with a deviation of only 8.55% at temperatures up to 1300 K. However, experimental results indicate that the stability of the piezoelectric performance of the grown AlN crystals is disrupted at temperatures above 870 K. This temperature limitation is attributed to point defects within AlN crystals, particularly those caused by oxygen-substituted nitrogen (ON). These findings provide valuable guidance for enhancing the piezoelectric temperature stability of AlN crystals through optimized experimental conditions, such as oxygen atmosphere treatment and defect modification during crystal growth.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.