{"title":"Ultra-Compact Cellular Structured Bio-Carbon Aerogels Supported PCM for Exceptional Thermal Insulation and Radiation Shielding for Space Applications","authors":"Zihao Zhao, Daili Feng, Xinxin Zhang, Yanhui Feng","doi":"10.1002/eem2.70042","DOIUrl":null,"url":null,"abstract":"<p>Integrating phase change materials (PCM) into thermal insulation materials offers a novel approach to aerospace thermal protection. Herein, we used waste biomass as a template; by selecting the appropriate carbonization temperature, we obtained carbon aerogels (CCA) with extremely high porosity (95.8%) and high pore volume. After encapsulating PEG2000, we achieved high enthalpy (137.79 J g<sup>−1</sup>, 91% of pure PEG2000) and low thermal conductivity (0.137 W (m·K)<sup>−1</sup>, 45% of pure PEG2000). Thanks to the rich hierarchical nano-micro porous structure of CCA and the high latent heat of PEG2000, CCA/PEG exhibits excellent thermal insulation properties (under a heating temperature of 131 °C, the material takes 1400 s to reach its maximum temperature and can be maintained below 65 °C) and cycle performance. Additionally, irradiation destroyed the structure of CCA/PEG, leading to the degradation of PEG and the formation of other carbonyl-containing compounds, which decreased its latent heat (4.2%) and thermal conductivity (16.1%). However, the irradiation-resistant CCA, acting as a protective layer, minimizes the impact of irradiation on PEG2000. Instead, irradiation enhances the hierarchical porous structure of the material, ultimately improving its thermal insulation performance. CCA/PEG has potential application prospects in thermal protection and aerospace and is a strong competitor for high-efficiency thermal insulation materials.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 5","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.70042","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating phase change materials (PCM) into thermal insulation materials offers a novel approach to aerospace thermal protection. Herein, we used waste biomass as a template; by selecting the appropriate carbonization temperature, we obtained carbon aerogels (CCA) with extremely high porosity (95.8%) and high pore volume. After encapsulating PEG2000, we achieved high enthalpy (137.79 J g−1, 91% of pure PEG2000) and low thermal conductivity (0.137 W (m·K)−1, 45% of pure PEG2000). Thanks to the rich hierarchical nano-micro porous structure of CCA and the high latent heat of PEG2000, CCA/PEG exhibits excellent thermal insulation properties (under a heating temperature of 131 °C, the material takes 1400 s to reach its maximum temperature and can be maintained below 65 °C) and cycle performance. Additionally, irradiation destroyed the structure of CCA/PEG, leading to the degradation of PEG and the formation of other carbonyl-containing compounds, which decreased its latent heat (4.2%) and thermal conductivity (16.1%). However, the irradiation-resistant CCA, acting as a protective layer, minimizes the impact of irradiation on PEG2000. Instead, irradiation enhances the hierarchical porous structure of the material, ultimately improving its thermal insulation performance. CCA/PEG has potential application prospects in thermal protection and aerospace and is a strong competitor for high-efficiency thermal insulation materials.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.