CorFuncSAXSNet: deep-learning-driven extraction of nanostructural parameters from small-angle X-ray scattering data of polymeric materials

IF 2.8 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Xuke Li, Lianlian Fu, Yunhang Liu, Xiaodan Meng, Ming Li, Peiling Ke
{"title":"CorFuncSAXSNet: deep-learning-driven extraction of nanostructural parameters from small-angle X-ray scattering data of polymeric materials","authors":"Xuke Li,&nbsp;Lianlian Fu,&nbsp;Yunhang Liu,&nbsp;Xiaodan Meng,&nbsp;Ming Li,&nbsp;Peiling Ke","doi":"10.1107/S1600576725005047","DOIUrl":null,"url":null,"abstract":"<p>Small-angle X-ray scattering (SAXS) analysis of semi-crystalline polymers remains a labour-intensive process requiring expert interpretation of correlation functions. To address this challenge, we present CorFuncSAXSNet: a deep neural network framework designed to directly predict nanostructural parameters – including lamellar crystalline thickness (dc) and amorphous layer thickness (da) – from 1D raw SAXS curves. Building upon SAXS datasets collected at the Shanghai Synchrotron Radiation Facility's BL19U2 beamline, we developed three neural architectures: a convolutional neural network, a residual network and a <i>q</i>-space attention network. Data augmentation strategies, including Gaussian noise injection and <i>q</i>-shift interpolation, improved model robustness against experimental uncertainties. Cross-validation results demonstrate that all networks achieve mean absolute errors of 0.109–0.112 nm for dc and 0.459–0.499 nm for da. Though amorphous layer predictions at large values exhibit higher errors due to dataset skewness (83.3% of data clustered at 4.5 &lt; dc &lt; 6.5 nm, 5.0 &lt; da &lt; 20.0 nm), our framework enables rapid parameter extraction (&lt;1 s per curve), reducing reliance on manual graphical methods. CorFuncSAXSNet bridges the gap between AI and synchrotron-based structural analysis, establishing a foundation for real-time smart beamline architectures.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"58 4","pages":"1399-1406"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576725005047","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Small-angle X-ray scattering (SAXS) analysis of semi-crystalline polymers remains a labour-intensive process requiring expert interpretation of correlation functions. To address this challenge, we present CorFuncSAXSNet: a deep neural network framework designed to directly predict nanostructural parameters – including lamellar crystalline thickness (dc) and amorphous layer thickness (da) – from 1D raw SAXS curves. Building upon SAXS datasets collected at the Shanghai Synchrotron Radiation Facility's BL19U2 beamline, we developed three neural architectures: a convolutional neural network, a residual network and a q-space attention network. Data augmentation strategies, including Gaussian noise injection and q-shift interpolation, improved model robustness against experimental uncertainties. Cross-validation results demonstrate that all networks achieve mean absolute errors of 0.109–0.112 nm for dc and 0.459–0.499 nm for da. Though amorphous layer predictions at large values exhibit higher errors due to dataset skewness (83.3% of data clustered at 4.5 < dc < 6.5 nm, 5.0 < da < 20.0 nm), our framework enables rapid parameter extraction (<1 s per curve), reducing reliance on manual graphical methods. CorFuncSAXSNet bridges the gap between AI and synchrotron-based structural analysis, establishing a foundation for real-time smart beamline architectures.

Abstract Image

CorFuncSAXSNet:基于深度学习的聚合物材料小角度x射线散射数据的纳米结构参数提取
半结晶聚合物的小角x射线散射(SAXS)分析仍然是一个劳动密集型的过程,需要专家解释相关函数。为了解决这一挑战,我们提出了CorFuncSAXSNet:一个深度神经网络框架,旨在直接预测纳米结构参数-包括片层晶体厚度(dc)和非晶层厚度(da) -从1D原始SAXS曲线。基于上海同步辐射设施BL19U2波束线收集的SAXS数据集,我们开发了三种神经结构:卷积神经网络、残差网络和q空间注意力网络。数据增强策略,包括高斯噪声注入和q移插值,提高了模型对实验不确定性的鲁棒性。交叉验证结果表明,所有网络的dc和da的平均绝对误差分别为0.109 ~ 0.112 nm和0.459 ~ 0.499 nm。尽管在大数值下非晶态层的预测由于数据集偏度而表现出更高的误差(83.3%的数据聚集在4.5 <;dc & lt;6.5 nm, 5.0 <;da & lt;20.0 nm),我们的框架能够快速提取参数(每条曲线1秒),减少对手动图形方法的依赖。CorFuncSAXSNet弥补了人工智能和基于同步加速器的结构分析之间的差距,为实时智能梁线架构奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Crystallography
Journal of Applied Crystallography CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
7.80
自引率
3.30%
发文量
178
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信