Robust Attack Detection Framework Using Pretrained CNN Model for the Edge Industrial IoT Networks

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Ibtihal A. Alablani, Mohammed J. F. Alenazi
{"title":"Robust Attack Detection Framework Using Pretrained CNN Model for the Edge Industrial IoT Networks","authors":"Ibtihal A. Alablani,&nbsp;Mohammed J. F. Alenazi","doi":"10.1002/cpe.70206","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The rapid expansion of edge industrial Internet of things (Edge-IIoT) has transformed industrial operations while introducing critical security challenges at the network edge. The growing sophistication of cyber attacks targeting Edge-IIoT networks, particularly in resource-constrained industrial environments, necessitates advanced detection mechanisms capable of identifying and classifying diverse attack patterns at the edge. This article presents a comprehensive edge-centric attack detection framework leveraging pretrained deep learning models for securing Edge-IIoT networks. Our methodology uses five state-of-the-art pretrained models, GoogleNet, AlexNet, EfficientNetB0, ResNet50, and MobileNet, evaluated on the Edge-IIoTset dataset comprising 2,219,201 network flow samples across 15 distinct attack classes. The framework efficiently processes many input features extracted from edge network traffic, including basic network characteristics, protocol headers, and industrial application-level attributes specific to Edge-IIoT environments. The experimental results demonstrate that GoogleNet achieves the highest accuracy of 97% and lowest performance degradation compared to other pretrained models with AlexNet at 96.85%, EfficientNetB0 at 96.81%, ResNet50 at 96.7%, and MobileNet at 96.42% in edge environments. Furthermore, our proposed approach significantly outperforms existing Edge-IIoT security studies using the same dataset by up to 4.2%.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 21-22","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70206","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid expansion of edge industrial Internet of things (Edge-IIoT) has transformed industrial operations while introducing critical security challenges at the network edge. The growing sophistication of cyber attacks targeting Edge-IIoT networks, particularly in resource-constrained industrial environments, necessitates advanced detection mechanisms capable of identifying and classifying diverse attack patterns at the edge. This article presents a comprehensive edge-centric attack detection framework leveraging pretrained deep learning models for securing Edge-IIoT networks. Our methodology uses five state-of-the-art pretrained models, GoogleNet, AlexNet, EfficientNetB0, ResNet50, and MobileNet, evaluated on the Edge-IIoTset dataset comprising 2,219,201 network flow samples across 15 distinct attack classes. The framework efficiently processes many input features extracted from edge network traffic, including basic network characteristics, protocol headers, and industrial application-level attributes specific to Edge-IIoT environments. The experimental results demonstrate that GoogleNet achieves the highest accuracy of 97% and lowest performance degradation compared to other pretrained models with AlexNet at 96.85%, EfficientNetB0 at 96.81%, ResNet50 at 96.7%, and MobileNet at 96.42% in edge environments. Furthermore, our proposed approach significantly outperforms existing Edge-IIoT security studies using the same dataset by up to 4.2%.

基于预训练CNN模型的边缘工业物联网鲁棒攻击检测框架
边缘工业物联网(edge - iiot)的快速扩展改变了工业运营,同时在网络边缘引入了关键的安全挑战。针对边缘工业物联网网络的网络攻击越来越复杂,特别是在资源受限的工业环境中,需要能够识别和分类边缘各种攻击模式的先进检测机制。本文提出了一个全面的以边缘为中心的攻击检测框架,利用预训练的深度学习模型来保护边缘iiot网络。我们的方法使用五种最先进的预训练模型,GoogleNet、AlexNet、EfficientNetB0、ResNet50和MobileNet,在Edge-IIoTset数据集上进行评估,该数据集包含15种不同攻击类别的2,219,201个网络流样本。该框架有效地处理从边缘网络流量中提取的许多输入特征,包括基本网络特征、协议头和特定于边缘iiot环境的工业应用级属性。实验结果表明,与其他预训练模型相比,在边缘环境下,GoogleNet的准确率最高,为97%,性能下降最低,AlexNet为96.85%,EfficientNetB0为96.81%,ResNet50为96.7%,MobileNet为96.42%。此外,我们提出的方法显著优于使用相同数据集的现有Edge-IIoT安全研究高达4.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信