Mutual Information Optimal Control of Discrete-Time Linear Systems

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Shoju Enami;Kenji Kashima
{"title":"Mutual Information Optimal Control of Discrete-Time Linear Systems","authors":"Shoju Enami;Kenji Kashima","doi":"10.1109/LCSYS.2025.3587369","DOIUrl":null,"url":null,"abstract":"In this letter, we formulate a mutual information optimal control problem (MIOCP) for discrete-time linear systems. This problem can be regarded as an extension of a maximum entropy optimal control problem (MEOCP). Differently from the MEOCP where the prior is fixed to the uniform distribution, the MIOCP optimizes the policy and prior simultaneously. As analytical results, under the policy and prior classes consisting of Gaussian distributions, we derive the optimal policy and prior of the MIOCP with the prior and policy fixed, respectively. Using the results, we propose an alternating minimization algorithm for the MIOCP. Through numerical experiments, we discuss how our proposed algorithm works.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1982-1987"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11075836","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11075836/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we formulate a mutual information optimal control problem (MIOCP) for discrete-time linear systems. This problem can be regarded as an extension of a maximum entropy optimal control problem (MEOCP). Differently from the MEOCP where the prior is fixed to the uniform distribution, the MIOCP optimizes the policy and prior simultaneously. As analytical results, under the policy and prior classes consisting of Gaussian distributions, we derive the optimal policy and prior of the MIOCP with the prior and policy fixed, respectively. Using the results, we propose an alternating minimization algorithm for the MIOCP. Through numerical experiments, we discuss how our proposed algorithm works.
离散线性系统的互信息最优控制
在本文中,我们提出了离散线性系统的互信息最优控制问题(MIOCP)。该问题可以看作是最大熵最优控制问题(MEOCP)的扩展。与MEOCP的先验固定为均匀分布不同,MIOCP同时优化策略和先验。分析结果表明,在由高斯分布组成的策略类和先验类下,我们分别导出了具有固定先验和策略的MIOCP的最优策略和先验。在此基础上,提出了一种交替最小化算法。通过数值实验,讨论了该算法的工作原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信